New data on the age and preservation of the Archean basement block under the Nakyn kimberlite field, Republic of Sakha (Yakutia)
https://doi.org/10.52349/0869-7892_2025_102_44-61
Abstract
The paper establishes the Archean (2643 ± 43 Ma) and Proterozoic (1804 ± 15 Ma) ages of zircon megacrystals from the Nyurba kimberlite pipe, as well as analyzes their typomorphic features. The Archean zircons are characterized by the lacking Late Karelian overgrowth zones, elevated concentrations of yttrium (Y > 100 ppm), rare earth elements (ΣREE > 100 ppm), and heavy rare earth elements (Lu/Gd > 1) compared to the Late Proterozoic zircons (Y > 100 ppm) , rare earth elements (ΣREE > 100 ppm), and heavy rare earth elements (Lu/Gd > 1) compared to the Late Proterozoic zircons (Y> 100 ppm; ΣREE < 50 ppm; Lu/Gd >< 1; Lu/Gd < 1). The obtained data suggest that these zircons originate from metamorphic rock units located in separate blocks or metamorphic zones, which indicates preservation of the Archean formations. The study evidences deformation in zircon crystals, which may serve as key morphological markers of deep-seated melt emplacement. Novel findings confirm preservation of the Ar - chean block of the Tyung terrane basement, which support the Clifford-Janse rule: commercial diamondiferous kimberlite bodies of the Nakyn field are confined within the Archean block. The presence of the Late Karelian overgrowths on the Arc - hean zircons from the xenolith basement of diamondiferous kimberlites in the Central Siberian diamond-bearing province demonstrates a large-scale uneven tectono-thermal transformation of the Tyung terrane for 1.8–2.1 Ga, which should influence the productivity of kimberlite fields or individual deposits.
About the Authors
M. N. GoloburdinaRussian Federation
Marina N. Goloburdina, Leading Geologist
Saint Petersburg
S. A. Grakhanov
Russian Federation
Sergey A. Grakhanov, DSc (Geology and Mineralogy), Chief Researcher; Chief Geologist
Saint Petersburg
Yakutsk
А. I. Dak
Russian Federation
Aleksey I. Dak, PhD (Geology and Mineralogy), Exploration Mineralogy Group Leader Vilyuy Geological Exploration Expedition
Mirny
RSCI AuthorID 307879
T. N. Zubova
Russian Federation
Tatiana N. Zubova, Deputy Director General in geological exploration
Saint Petersburg
V. G. Malkovets
Russian Federation
Vladimir G. Malkovets, PhD, Leading Researcher Geological Research Center, Vilyuy Geological Exploration Expedition; Senior Researcher
Mirny
Novosibirsk
Scopus Author ID 6505902107
ResearcherID E-5222-2011
V. F. Proskurnin
Russian Federation
Vasily F. Proskurnin, DSc (Geology and Mineralogy), Head, Department of Regional Geology and Mineral Resources of the North of Siberia
Saint Petersburg
Scopus Author ID 24071443100
RSCI AuthorID 125966
A. V. Tarasov
Russian Federation
Aleksey V. Tarasov, PhD (Geology and Mineralogy), Deputy Head, Department of Geological Foundations, Science, and Informatics
Moscow
References
1. Sarsadskikh N. N. Structural factor of kimberlite distribution on the Siberian Platform and forecasting of primary diamond potential. Prediction and prospecting methods for nickel, tin, and diamond deposits in the Soviet Arctic: Proc., Leningrad, 15–17 Jan. 1969. Leningrad; 1968. P. 72–76. (In Russ.).
2. Masaitis V. L., Mikhailov M. B., Selivanovskaya T. V. Volcanism and tectonics of the Mid-Paleozoic Patom-Vilyuy aulacogen. VSEGEI Proc. N. S. Vol. 192. Moscow: Nedra; 1975. 181 p. (In Russ.).
3. Suvorov V. D. Deep seismic studies in the Yakutian kimberlite province / Publ. Ed. S. V. Krylov. Novosibirsk: Nauka: Siberian Publ. Co.; 1993. 134 p. (In Russ.).
4. Gorev N. I. Kimberlite-controlling zones of the NorthEast Siberian platform. Geology, distribution patterns, methods of forecasting and prospecting for diamond deposits: Proc. of the Sci. Conf., Mirny, 24–28 March 1998. Mirny: Mirny State Printing House; 1998. P. 246–248. (In Russ.).
5. Gorev N. I. Tectonic zonation of the cover of the Siberian platform during forecasting primary sources of diamonds. Problems of diamond geology and some ways of their solution. Voronezh: Voronezh State Univ.; 2001. P. 462–481. (In Russ.).
6. Manakov A. V. Structural features of the lithosphere in the Yakutian kimberlite province. Voronezh: Voronezh State Univ.; 1999. 58 p. (In Russ.).
7. Manakov A. V. The technique of lithosphere root detection on the base of integrated geophysical data. Problems of diamond geology and some ways of their solution. Voronezh: Voronezh State Univ.; 2001. P. 270–277. (In Russ.).
8. Smelov A. P., Timofeev V. F. Terrane analysis and the geodynamic model of the formation of the North Asian craton in the Early Precambrian. Tikhookeanskaya Geologiya. 2003; 22 (6): 42–54. (In Russ.).
9. Early Proterozoic terranes, collision zones, and associated anorthosites in the northeast of the Siberian craton: Isotope geochemistry and age characteristics / O. M. Rozen [et al.]. Russian Geology and Geophysics. 2000; 41 (2): 159–178. (In Russ.).
10. Rozen O. M., Manakov A. V., Zinchuk N. N. Siberian craton: Origin and the diamond control / Sci. Ed. S. I. Mityukhin. Moscow: Sci. World; 2006. 210 p. (In Russ.).
11. Clifford T. N. Tectono–metallogenic units and metallogenic provinces of Africa. Earth and Planetary Science Letters. 1966; 1 (6): 421–434. https://doi.org/10.1016/0012-821x (66)90039-2.
12. Janse A. J. A. Is Clifford’s Rule still valid? Affirmative examples from around the World. Proc. of the Fifth Intern. Kimberlite Conf. Vol. 2. Diamonds: Characterization, Genesis and Exploration, Araxá, June 1991 / Eds. H. O. A. Meyer, O. Leonardos. Brasilia: Companhia de Pescuisa de Recursos Minerais; 1994. P. 215–235.
13. Janse A. J. A., Sheahan P. A. Catalogue of world wide diamond and kimberlite occurrences: A selective and annotative approach. Journal of Geochemical Exploration. 1995; 53 (1–3): 73–111. https://doi.org/10.1016/0375-6742(94)00017-6.
14. Bozhko N. A. Modern data on geotectonic factors of diamondiferous kimberlite localization. Problems of Forecasting, Prospecting, and Studying Mineral Deposits at the Threshold of the XXI Century: Proc. of the Reg. Sci. Conf. “Current Problems of ALROSA’s Geological Industry, and Scientific and Methodological Provisions of Their Solutions”, Mirny, Apr. 2003 / Publ. Ed. N. N. Zinchuk [et al.]. Voronezh: Voronezh State Univ.; 2003. P. 360–365. (In Russ.).
15. Bozhko N. A. Tectonic settings of diamondiferous kimberlite localization beyond Archean cratons. Ores and Metals. 2006; (1): 31–41. (In Russ.).
16. Helmstaedt H. H., Gurney J. J. Geotectonic controls of primary diamond deposits: Implications for area selection. Journal of Geochemical Exploration. 1995; 53 (1–3): 125–144. https://doi.org/10.1016/0375-6742(94)00018-7.
17. Gusev N. The Anabar Shield of the Siberian Craton: Composition, geochemistry, geochronology. Saarbrücken: LAMBERT Academic Publishing; 2013. 181 p. (In Russ.).
18. Williams I. S. U-Th-Pb geochronology by ion microprobe. Applications of microanalytical techniques to understanding mineralizing processes / Eds. M. A. McKibben, W. C. Shanks III, W. I. Ridley. Vol. 7. Littleton, USA: Society of Economic Geologists; 1998. P. 1–35. https://doi.org/10.5382/Rev.07.01.
19. Ludwig K. R. SQUID 1.13a. A User’s Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Center Spec. Publ. Berkeley, USA: Berkeley Geochronol. Center; 2005. 19 p.
20. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards / L. P. Black [et al.]. Chemical Geology. 2004; 205 (1–2): 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.
21. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis / M. Wiedenbeck [et al.]. Geo standards and Geoanalytical Research. 1995; 19 (1): 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x.
22. Hoskin P. W. O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. J. Trace Microprobe Tech. 1998; 16 (3): 301–326.
23. Further characterisation of the 91500 zircon crystal / M. Wiedenbeck [et al.]. Geostandards and Geoanalytical Research. 2004; 28 (1): 9–39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x.
24. Zircon M257 — a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon / L. Nasdala [et al.]. Geostandards and Geoanalytical Research. 2008; 32 (3): 247–265. https://doi.org/10.1111/j.1751-908X.-2008.00914.x.
25. Isotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry / D. Szymanowski [et al.]. Chemical Geology. 2018; 481: 146–154. https://doi.org/10.1016/j.chemgeo.2018.02.001.
26. Recurrent magmatic activity on a lithosphere-scale structure: Crystallization and deformation in kimberlitic zircons / I. G. Tretiakova [et al.]. Gondwana Research. 2017; 42: 126–132. https://doi.org/10.1016/j.gr.2016.10.006.
27. Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology. 2002; 184 (1–2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2.
28. Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol. 2006; 151: 413–433. https://doi.org/10.1007/s00410-006-0068-5.
29. Palme H., O’Neill H. St. C. 2.01 — cosmochemical estimates of mantle composition. Treatise on Geochemistry. 2007; 2: 1–38. https://doi.org/10.1016/B0-08-043751-6/02177-0.
30. Smelov A. P., Timofeev V. F. The age of the North Asian Cratonic basement: An overview. Gondwana Research. 2007; 12 (3): 279–288. https://doi.org/10.1016/j.gr.2006.10.017.
31. General foundation of the eastern part of the craton / A. P. Smelov [et al.]. Tectonics, geodynamics and metallogeny of the territory of the Sakha Republic (Yakutia) / Publ. Eds. L. M. Parfenov, M. I. Kuzmin. Moscow: МАIK “Nauka/ Interperiodica”; 2001, P. 108–112. (In Russ.).
32. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia / M. Koreshkova [et al.]. Precambrian Research. 2009; 168 (3– 4): 197–212. https://doi.org/10.1016/j.precamres.2008.09.007.
33. Vladykin N. V., Lepekhina Е. А. The age of unusual xenogenic zircons from Yakutian kimberlites. Dokl. Earth Sc. 2009; 429: 1451–1456. https://doi.org/10.1134/s1028334x09090098. (In Russ.).
34. Zircon from kimberlites of the Nyurbinskaya pipe as indicator of kimberlite emplacement and lithosphere evolution / Z. V. Spetsius [et al.]. Mineralogical Magazine. 2011; 75 (3): 1922.
35. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U-Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes / V. S. Shatsky [et al.]. Precambrian Research. 2016; 282: 1–20. https://doi.org/10.1016/j.precamres.2016.06.022.
36. Multi-stage modification of Paleoarchean crust be - neath the Anabar tectonic province (Siberian craton) / V. S. Shatsky [et al.]. Precambrian Research. 2018; 305: 125–144. https://doi.org/10.1016/j.precamres.2017.11.017.
37. The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: Coupled or decoupled? / V. S. Shatsky [et al.]. Precambrian Research. 2019; 332: 105388. https://doi.org/10.1016/j.precamres.2019.105388.
38. Koreshkova M., Downes H. The age of the lower crust of the central part of the Columbia supercontinent: A review of zircon data. Gondwana Research. 2021; 96: 37–55. https://doi.org/10.1016/j.gr.2021.02.024.
39. Features of the structure and evolution of the lower parts of the continental crust of the Yakutian diamondiferous province in the area of the Upper-Muna kimberlite field / V. S. Shatsky [et al.]. Doklady Rossijskoj akademii nauk. Nauki o Zemle. 2023; 508 (2): 173–184. https://doi.org/10.31857/S2686739722602393. (In Russ.).
Review
For citations:
Goloburdina M.N., Grakhanov S.A., Dak А.I., Zubova T.N., Malkovets V.G., Proskurnin V.F., Tarasov A.V. New data on the age and preservation of the Archean basement block under the Nakyn kimberlite field, Republic of Sakha (Yakutia). Regional Geology and Metallogeny. 2025;32(2 (102)):44-61. (In Russ.) https://doi.org/10.52349/0869-7892_2025_102_44-61