Preview

Regional Geology and Metallogeny

Advanced search

Revealing the porphyry copper-gold potential in granitoid complexes of the Russian Federation based on Porphyry Indicator Zircons (PIZs)

https://doi.org/10.52349/0869-7892_2024_100_126-146

Abstract

The paper discusses new data from the regional metallogenic surveillance of the Russian Federation territory for porphyry gold-copper mineralization after the authors analyzing the distribution patterns of trace elements (REE+Y, Ti, Hf, U, Th, Pb) in accessory zircons. They correspond to their indicative geochemical parameters — Porphyry Indicator Zircons (PIZs): 1) Ce/Nd; 2) Eu/Eu*; 3) (Ce/Nd)/Y; 4) Dy/Yb; 5) (10000xEu/Eu*)/Y; 6) Th/U and 7) To C (Ti-in-zircon thermometer), which H. Pizarro et al. proposed to sort the granitoid complexes of different ages into potentially orebearing and barren. The SHRIMP-II secondary ion microprobe studied 317 samples belonging to 255 granitoid complexes. They relate to either intrusive complexes or separate granitoid massifs (or their separate intrusion phrases) as prospective for porphyry mineralization.
Most of the studied granitoid complexes were found to show a negative result, while only every eighth met the highest degree of productivity, when the values of all seven PIZs correspond to their reference values. The findings justify 15 new localities from the unlicensed subsoil fund out of more than 200 prospective sites, which will contribute to applying for new licenses in Russia.

About the Authors

V. V. Shatov
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Vitaly V. Shatov - PhD (Geology and Mineralogy), Head, Centre of Predictive Metallogenic Studies

Saint Petersburg

Scopus Author ID 6602617938

RSCI Author ID ID 98687



M. A. Tkachenko
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Maksim A. Tkachenko - PhD (Geology and Mineralogy), First Deputy Director General

Saint Petersburg

ResearcherID P-9333-2017



T. N. Zubova
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Tatiana N. Zubova - Deputy Director General in geological exploration

Saint Petersburg



S. S. Shevchenko
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Sergey S. Shevchenko - Deputy Director General - Head of Laboratory and Analytical Service

Saint Petersburg



V. I. Leontev
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Vasilii I. Leontev - Deputy Head, Centre of Predictive Metallogenic Studies

Saint Petersburg

Scopus Author ID 57195316170

ResearcherID P-3351-2017



B. V. Belyatsky
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Boris V. Belyatsky - Leading Engineer, Centre of Isotopic Research

Saint Petersburg

Scopus Author ID 8977408200

ResearcherID V-6644-2019



N. V. Rodionov
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Nikolay V. Rodionov - PhD (Physics and Mathematics), Head, Sector of Mass-Spectrometric Analysis, Centre of Isotopic Research

Saint Petersburg

Scopus Author ID 12789575500

ResearcherID T-8826-2017



S. A. Sergeev
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Sergey A. Sergeev - PhD (Geology and Mineralogy), Head, Centre of Isotopic Research

Saint Petersburg

Scopus Author ID 35467278500

ResearcherID N-4385-2013



A. V. Tarasov
Federal Subsoil Resources Management Agency
Russian Federation

Aleksey V. Tarasov - Deputy Head, Management of Geological Bases, Science, and Information Technology

Moscow



S. I. Trushin
Polymetal
Russian Federation

Sergey I. Trushin - Deputy Director General

Saint Petersburg



A. V. Kozlov
Saint-Petersburg Mining University
Russian Federation

Aleksandr V. Kozlov - DSc (Geology and Mineralogy), Associate Professor, Head, Department of Geology and Exploration of Mineral Deposits

Saint Petersburg



References

1. Copper-porphyry deposits. Series: Models of precious and base metal deposits / A. I. Krivtsov [et al]. Moscow: TSNIGRI; 2001. 232 p. (In Russ.).

2. Porphyry copper deposit model / D. A. John [et al.]. Scientific Investigations Report 2010-5070-B, U. S. Geological Survey: Reston, Virginia; 2010. 169 p. (In Russ.).

3. Sillitoe R. H. Porphyry copper systems. Economic Geology. 2010; 105 (1): 3–41. http://dx.doi.org/10.2113/gsecongeo.105.1.3

4. Sinclair W. D. Porphyry deposits. Mineral deposits of Canada: Geological Association of Canada Special Publication 5. 2007. P. 223–243. (In Russ.).

5. Migachev I. F., Girfanov M. M., Shishakov V. B. Copper-porphyry deposit of Peschanka. Ores and metals. 1995; (3): 48– 58 (In Russ.).

6. Porphyry‑epithermal Cu‑Mo‑Au–Ag mineralization in the Nakhodka ore field, Baimka Trend, Chukotka, Russia: a geological, mineralogical, and geochemical perspective / A. F. Chitalin [et al.]. Mineralium Deposita. 2023; 58: 287–306. https://doi.org/10.1007/s00126-022-01122-2.

7. The superlarge Malmyzh porphyry Cu-Au deposit, Sikhote-Alin, eastern Russia: Igneous geochemistry, hydrothermal alteration, mineralization, and fluid inclusion characteristics / S. G. Soloviev [et al.]. Ore Geology Reviews. 2019; 113: 1–27. https://doi.org/10.1016/j.oregeorev.2019.103112.

8. Yakubchuk A. S. Porphyry deposits of Northern Eurasia: Practical aspects of tectonic control, structural features and estimates of depth of erosion from the Urals to the Pacific. Geology of Ore Deposits. 2024; 66 (1): 3–20. https://doi.org/10.1134/S1075701524010094.

9. Map of distribution patterns of copper-gold-porphyry deposits of the Russian territory at 1 : 2 500 000 scale (based on synthetics results of state geological mapping at 1M scale of 3rd generation) / O. V. Petrov [et al.]. Regional Geology and Metallogeny. 2020б; (84): 5–24. (In Russ.)

10. Identification of new objects promising for porphyry molybdenum-copper mineralization when creating the State geological map 1000/3: Sheets O-55, O-56 (Northern Priokhotye, Magadan region) as an example / A. A. Alenicheva [et al.]. Ores and metals. 2024; (2): 5–27. https://doi.org/10.47765/0869-5997-2024-10006. (In Russ.)

11. Utilizing compositions of zircon and apatite for prospecting of Cu-Mo-Auporphyry mineralization in the Pekinsky and Tessemsky granitoid massifs of the Taimyr-Severozemelskaya folded area / S. V. Berzin [et al.]. Lithosphere. 2024; 24 (3): 547–565. https://doi.org/10.24930/2500-302X-2024-24-3-547-565. (In Russ.).

12. Zircon geochemistry of anatexic and diatexis stages migmatite formation (NW Ladoga Region) / Glebovitsky V. A. [et al.]. Dokl. RAN. 2008; 420 (6): 813–817. (In Russ.).

13. Svetlitskaya T. V., Nevolko P. A. Porphyry potential of the Kultuma deposit based on zircon trace element compositions (Eastern Transbaikalia, Russia). Razvedka i okhrana nedr. 2023; (3): 11–19. (In Russ.)

14. Rare earth and trace elements distribution in zircons from miaskite lamproites of the Panozero Complex, Central Karelia / S. G. Skublov [et al.]. Geokhimiya. 2009; (9): 958–971. (In Russ.).

15. Fedotova А. А., Bibikova E. V., Simakin S. G. Zircon microbe geochemistry as an indicator of mineral genesis in geochronological investigations. Geokhimiya. 2008; (9): 980–997. (In Russ.).

16. Ballard J. R., Palin M. J., Campbell I. H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology. 2002; 144 (3): 347–364. https://doi.org/10.1007/s00410-002-0402-5.

17. Burnham A. D., Berry A. J. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta. 2012; 95: 196–212. https://doi.org/10.1016/j.gca.2012.07.034.

18. Carrasco-Godoy C., Campbell I. H., Cajal Y. Quantifying the criteria used to identify zircons from ore-bearing and barren systems in porphyry copper exploration. Econ. Geology. 2024; 119: 1035–1058. https://doi.org/0.5382/econgeo.5086.19.

19. Ti-in-zircon thermometry: Applications and limitations / B. Fu [et al.]. Contributions to Mineralogy and Petrology. 2008; 156: 197–215. https://doi.org/10.1007/s00410-008-0281-5.

20. Loader M. A., Wilkinson J. J., Armstrong R. N. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters. 2017; 472: 107–119. https://doi.org/10.1016/j.epsl.2017.05.010.

21. Loucks R. R., Fiorentini M. L., Henrı´quez G. J. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology. 2020; 61 (3): 1–30. https://doi.org/10.1093/petrology/egaa034.

22. Zircon compositions as a pathfinder for porphyry Cu ± ± Mo ± Au Deposits / Y-J. Lu [et al.]. Society Econ. Geology Special Publication. 2016; (19): 329–347. https://doi.org/10.13140/RG.2.2.22790.1696.

23. Uranium-Pb zircon ages, whole-rock and zircon mineral geochemistry as indicators for magmatic fertility and porphyry Cu-Mo-Au mineralization at the Bystrinsky and Shakhtama deposits, Eastern Transbaikalia, Russia / P. A. Nevolko [et al.]. Ore Geology Reviews. 2021; 139 (B): 104532, https:// doi.org/10.1016/j.oregeorev.2021.104532.

24. Porphyry indicator zircons and geochronology of magmatic rocks from the Malmyzh and Pony Cu-Au porphyry ore fields (Russian Far East) / O. V. Petrov [et al.]. Ore Geology Reviews. 2021; 139: 1–22. https://doi.org/10.1016/j.oregeorev.2021.104491.

25. Revealing prospects of new gold-copper-porphyry deposits of the Malmyzh type in the Lower-Amur Region (Russian Far East) / O. V. Petrov [et al.]. Geology of Ore Deposits. 2023; 65 (1): S85–S123. https://doi.org/10.1134/S107570152307019X.

26. Richards J. P., Kerrich R. Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology. 2007; 102: 537−576. https://doi.org/10.2113/gsecongeo.102.4.537.

27. Svetlitskaya T. V., Nevolko P. A. New whole-rock skarn and porphyry fertility indicators: Insights from Cu-Au-Fe skarn and Cu-Mo-Au porphyry deposits in Eastern Transbaikalia, Russia. Ore Geology Reviews. 2022; 149: 1–24. https://doi.org/10.1016/j.oregeorev.2022.105108.

28. Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology. 2006; 151: 413–433. https://doi.org/10.1007/s00410-006-0068-5.

29. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits / H. Pizarro [et al.]. Ore Geology Reviews. 2020; 126: 1–18. https://doi.org/10.1016/j.oregeorev.2020.103771

30. Hoskin P. W. O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICP-MS: A consideration and comparison of two broadly competitive techniques. Journal of Trace and Microprobe Techniques. 1998; 16 (3): 301–326. https://doi.org/10.1007/BF02719033.

31. Further characterization of the 91500 zircon crystal / M. Wiedenbeck [et al.]. Geostandards Newsletter. 2004; 28: 9–39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x.

32. Williams I. S. U-Th-Pb geochronology by ion microprobe // Applications of microanalytical techniques to understanding mineralizing processes / [Eds.] M. A. McKibben, W. C. Shanks III and W. I. Ridley). Rev. Econ. Geol. 1998; 7: 1–35.


Review

For citations:


Shatov V.V., Tkachenko M.A., Zubova T.N., Shevchenko S.S., Leontev V.I., Belyatsky B.V., Rodionov N.V., Sergeev S.A., Tarasov A.V., Trushin S.I., Kozlov A.V. Revealing the porphyry copper-gold potential in granitoid complexes of the Russian Federation based on Porphyry Indicator Zircons (PIZs). Regional Geology and Metallogeny. 2024;31(4):126-146. (In Russ.) https://doi.org/10.52349/0869-7892_2024_100_126-146

Views: 24


ISSN 0869-7892 (Print)