Preview

Regional Geology and Metallogeny

Advanced search

Wallrock hydrothermokarst cavities

https://doi.org/10.52349/0869-7892_2025_101_134-152

Abstract

The paper focuses on hydrothermokarst cavities of ore deposits. They differ in morphology, genesis, and location in ore fields. Hydrothermal cavities relate to an additional search sign of mineralization. Cavities often contain unique mineralogical aggregates and can serve as valuable sightseeing and tourist sites.

About the Author

Yu. S. Lyakhnitskiy
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

PhD (Geology and Mineralogy), Leading Specialist, Public Relations Department Centre of Scientific-Methodological and Organizational Support of State Geological Mapping

Saint Petersburg



References

1. Fersman A. E. Morphology and geochemistry of Tyuya-Muyun. Publications on Radium. Vol. 3. Leningrad: AS USSR; 1927. 93 p. (In Russ.).

2. Fersman A. E. Tyuya-Muyun radium mine. Nature. 1924; (1–6): 57–88. (In Russ.).

3. Proceedings of the Geological Committee. New series. Iss. 181. Tyuya-Muyun Radium Deposit / A. P. Kirikov. Leningrad; 1929. 65 p. (In Russ.).

4. Dublyanskiy Yu. V. Hydrothermokarst as an ore preparation process. Novosibirsk: IGiG SB AS USSR; 1985. 18 p. (In Russ.).

5. Kutyrev E. I., Lyakhnitskiy Yu. S. The role of karst in the formation of lead, zinc, antimony, mercury, and fluorite deposits. Lithology and Mineral Resources. 1982; (2): 54–69. (In Russ.).

6. Kutyrev E. I., Mikhailov B. M., Lyakhnitskiy Yu. S. Karst deposits. Leningrad: Nedra; 1989. 311 p. (In Russ.).

7. Tsykin R. A. Deposits and useful minerals of karst. Novosibirsk: Nauka; 1985. 165 p. (In Russ.).

8. Mozgova N. N. Mineralized cavities in the Tetyukhe skarns. Zapiski RMO. 1963 (92); 645–663. (In Russ.).

9. Smirnov S. S. Polymetallic deposits and Eastern Transbaikal metallogeny. Moscow: AS USSR; 1961. 508 p. (In Russ.).

10. Mikhaylev V. N. Karst of Kyrgyzstan / Acad. of Sci. of the Kyrgyz SSR. Inst. of Geology named after M. M. Adyshev. Frunze: Ilim; 1989. 147 p. (In Russ.).

11. Fedorchuk V. P. Geology of mercury. Moscow: Nedra; 1983. 270 p. (In Russ.).

12. Fedorchuk V. P. Geology of antimony. Moscow: Nedra; 1985. 267 p. (In Russ.).

13. Khalmukhamedov T. R., Zavyalov G. E. Types of fluorite-bearing cavities of the Badash deposit (Southern Kazakhstan). Geology and Patterns of Distribution of Non-metallic minerals of Central Asia. Vol. 3. Tashkent: SAIGIMS; 1981. P. 29–34.

14. Tsyganko M. V., Halevin A. N., Tsurihin E. A. Karst cavity “Krasnaya Shapochka”. Speleology and spelestology. Proc. of the IV Intern. sci. conf. Naberezhnye Chelny: NISPTR; 2013. P. 99–101. (In Russ.).

15. The Naica caves survey / G. Badino [et al.]. Proc. of the 15th Intern. Cong. of Speleology. Kerrville, Texas: National Speleological Society; 2009. P. 1764–1769.

16. De Castro C. Le miniere di mercurio del Mt. Amiata // Mem. Descritt. Carta Geol. Ital. Vol. XVI. Roma; 1914. 207 p.

17. Lyubchenko V. A., Pats V. M. Belorechenskoye barite deposit in the North Caucasus. Prospect and Protection of Mineral Resources. 1967; (12): 24–26. (In Russ.).

18. Forti P., Sanna L. The Naica Project — A multidisciplinary study of the largest gypsum crystals of the world. Episodes. 2010; 33 (1); 23–32. https://doi.org/10.18814/epiiugs/2010/v33i1/004.

19. La plataforma Triásica Alpujárride (Zonas internas de la Cordillera Bética, España) / I. Martin-Rojas [et al.]. Revista de la Sociedad Geológica de España. 2014; 27 (1): 63–78.

20. Arribas A., Tosdal R. M. Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain; origin and relationship to other European deposits. Economic Geology. 1994; 89 (5): 1074–1093. https://doi.org/10.2113/gsecongeo.89.5.1074.

21. Erwood R. J., Kesler S. E., Cloke P. L. Compositionally distinct, saline hydrothermal solutions, Naica Mine, Chihuahua, Mexico. Economic Geology. 1979; 74 (1): 95–108. https://doi.org/10.2113/gsecongeo.74.1.95.

22. Stone J. G. Ore genesis in the Naica District, Chihuahua, Mexico. Economic Geology. 1959; 54 (6): 1002–1034. https://doi.org/10.2113/gsecongeo.54.6.1002.

23. The formation of gypsum megacrystals / J. M. García-Ruiz [et al.]. Geology. 2007; 35 (4): 327–330.

24. Degoutin N. Les grottes a cristaux de gypse de Naica. Societad Cientifica Antonio Alzate Rev. 1912; 32: 35–38.

25. Rickwood P. C. The largest crystals. American Mineralogist. 1981; 66: 885–907.

26. London D. New “cave of the crystals” at Naica, Chihuahua, Mexico. Earth Scientist. 2003: 24–27.

27. De Waele J., Naseddu A. Le Grotte di Miniera. Tra economia mineraria ed economia turistica. Bologna: Società Speleologica Italiana; 2005. 200 p.

28. A climatic control on the formation of gigantic gyp- sum crystals within the hypogenic caves of Naica (Mexico)? / P. S. Garofalo [et al.]. Earth and Planetary Science Letters. 2010; 289: 560–569. https://doi.org/10.1016/j.epsl.2009.11.057.

29. The origin of large gypsum crystals in the Geo de of Pulpí (Almería, Spain) / A. Canals [et al.]. Geology. 2019; 47 (12): 1161–1165. https://doi.org/10.1130/G46734.1.

30. Sanz de Galdeano C. Geologic evolution of the Betic Cordilleras in the Western Mediterranean, Miocene to the present. Tectonophysics. 1990: 172 (1–2): 107–119. https://doi.org/10.1016/0040-1951(90)90062-D.

31. Al-Hashimi W. S. Significance of strontium distribution in some carbonate rocks in the Carboniferous of Northumberland, England. Journal of Sedimentary Research. 1976; 46 (2): 369–376. https://doi.org/10.1306/212F6F69-2B2411D7-8648000102C1865D.

32. Playà E., Ortí F., Rosell L. Marine to non-marine sedimentation in the Upper Miocene evaporites of the Eastern Betics, SE Spain: Sedimentological and geochemical evidence. Sedimentary Geology. 2000; 133 (1–2): 135–166. https://doi.org/10.1016/S0037-0738(00)00033-6.

33. Sissingh W. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: Concurrent development of Betic-Rif basins (southern Spain, northern Morocco). Netherlands Journal of Geosciences. 2008; 87: 241–289. https://doi.org/10.1017/S0016774600023350.

34. Microclimate processes characterization of the giant Geode of Pulpí (Almería, Spain): Technical criteria for conservation / A. Fernández-Cortés [et al.]. International Journal of Climatology. 2006; 26 (5): 691–706.

35. Chernov A. A. Modern crystallography III: Crystal growth. Heidelberg: Springer Berlin; 1984. 521 p. https://doi.org/10.1007/978-3-642-81835-6.

36. Climate sensitivity, sea level and atmospheric carbon dioxide / J. Hansen [et al.]. Philosophical Transactions of the Royal Society A. 2013; 371: 20120294. https://doi.org/10.1098/rsta.2012.0294


Review

For citations:


Lyakhnitskiy Yu.S. Wallrock hydrothermokarst cavities. Regional Geology and Metallogeny. 2025;32(1 (101)):134-152. (In Russ.) https://doi.org/10.52349/0869-7892_2025_101_134-152

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7892 (Print)