Preview

Regional Geology and Metallogeny

Advanced search

Evolution of uranium isotopic composition in the sandy-clay aquifer of the paleo-valley in the Northern Dvina depression

Abstract

The origin and redistribution of U isotopes in the aquifer of Vendian sandy-clay deposits of a paleo-valley in northwestern Russia is described. Chemical weathering of Vendian deposits led to the formation of a thick oxidation zone developed above 250 m.b.s.l. The inverse correlation between U and Fe concentrations is a result of U removal from paleo-valley slopes under oxidizing conditions and its accumulation on the bottom under reducing conditions, and accumulation of Fe on the slopes and its removal from the bottom. Accordingly, the groundwater near the redox barrier is characterized by the highest U concentration and the activity of the 234U isotope that handicaps their use for drinking and medicinal purposes. Radiologically, the groundwater located near recharge zones is the safest.

About the Author

A. I. Malov
N. Laverov Federal Center for Integrated Arctic Research (FCIARctic)
Russian Federation

Doctor of Geological and Mineralogical Sciences, Associate Professor, Chief Researcher



References

1. Goretskiy G. I. Allyuviy velikikh antropogenovykh prarek Russkoy ravniny [Alluvium of the great anthropogenic ancestors of the Russian Plain]. Moscow, Nauka, 1964, 415 p.

2. Kashtanov S. G. New data on the history of the development of Paleokama. DAN SSSR, 1956, vol. 106, pp. 708–711. (In Russian).

3. Mikhaylov B. M., Gorbachev B. F., Kharlashin A. P. Prognoznaya otsenka zon gipergeneza na tverdye poleznye iskopaemye pri geologicheskoy s”emke masshtaba 1 : 50 000–1 : 200 000 [Predictive estimation of zones of hypergenesis for solid minerals in geological surveying at a scale of 1:50,000–1:200,000]. St. Petersburg, VSEGEI, 1998, 76 p.

4. Paleogeografiya i litologiya venda i kembriya zapada Vostochno-Evropeyskoy platformy [Paleogeography and lithology of the Vendian and Cambrian west of the East European platform]. Eds.: B. M. Keller, A. Yu. Rozanova. Moscow, Nauka, 1980, 119 p.

5. Smyslov A. A., Moiseenko U. I., Chadovich T. Z. Teplovoy rezhim i radioaktivnost’ Zemli [Thermal regime and radioactivity of the Earth]. Leningrad, Nedra, 1979, 345 p.

6. Trebovaniya po sostavleniyu karty rudonosnosti zon gipergeneza masshtaba 1 : 1 000 000 v komplekt Gosgeolkarty-1000 (tret’ego pokoleniya) [Requirements for compiling an ore-bearing map of ore-bearing zones of hypergenesis on a scale of 1:1,000,000 in the Gosgeolkarta-1000 set (third generation)]. Eds.: G. M. Shor, V. V. Starchenko, E. P. Mironyuk i dr. St. Petersburg, VSEGEI, 2005, 47 p.

7. Barnes C. E., Cochran J. K. Uranium geochemistry in estuarine sediments: Controls on removal and release processes. Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 555–589.

8. DePaolo D. J., Maher K., Christensen J. N., McManus J. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984. Earth Planet. Sci. Lett., 2006, vol. 248, pp. 394–410.

9. Ehlers J., Astakhov V., Gibbard P. L., Mangerud J., Svendsen J. I. GLACIATIONS. Middle Pleistocene in Eurasia. Reference Module in Earth Systems and Environmental Sciences, Encyclopedia of Quaternary Science. Amsterdam, Elsevier, 2013, pp. 172–179.

10. Han L. F., Plummer N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Sci. Rev., 2016, vol. 152, pp. 119–142.

11. Ivanovich M., Fröhlich K., Hendry M. J. Uranium-series radionuclides in fluids and solids, Milk River aquifer, AB, Canada. Appl. Geochem., 1991, vol. 6, pp. 405–418.

12. Keatley A. C., Scott T. B., Davis S., Jones C. P., Turner P. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics. J. Environ. Radioact., 2015, vol. 150, pp. 75–85.

13. Malov A. I. Water-Rock Interaction in Vendian Sandy-Clayey Rocks of the Mezen Syneclise. Lithol. Miner. Resour., 2004, vol. 39, pp. 345–356.

14. Malov A. I. The use of the geological benchmarks to assess the residence time of groundwater in the aquifer using uranium isotopes on the example of the Northern Dvina basin. Lithol. Miner. Resour., 2013, vol. 48, pp. 254–265.

15. Malov A. I. Estimation of uranium migration parameters in sandstone aquifers. J. Environ. Radioact., 2016, vol. 153, pp. 61–67.

16. Malov A. I. Evolution of the groundwater chemistry in the coastal aquifers of the south-eastern White Sea area (NW Russia) using 14C and 234U–238U dating. Science of the Total Environment, 2018, vol. 616–617, pp. 1208–1223.

17. Malov A. I., Bolotov I. N., Pokrovsky O. S., Zykov S. B., Tokarev I. V., Arslanov K. A., Druzhinin S. V., Lyubas A. A., Gofarov M. Y., Kostikova I. A. et al. Modeling past and present activity of a subarctic hydrothermal system using O, H, C, U and Th isotopes. Appl. Geochem., 2015, vol. 63, pp. 93–104.

18. Markova A. K., Vislobokova I. A. Mammal faunas in Europe at the end of the Early – Beginning of the Middle Pleistocene. Quat. Int., 2016, vol. 420, pp. 363–377.

19. Porcelli D. Investigating groundwater processes using U- and Th-series nuclides. Radioact. Environ., 2008, vol. 13, pp. 105–153.

20. World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification. IAEA-TECDOC-1629. Vienna, Austria, International Atomic Energy Agency, 2009, 117 p.


Review

For citations:


Malov A.I. Evolution of uranium isotopic composition in the sandy-clay aquifer of the paleo-valley in the Northern Dvina depression. Regional Geology and Metallogeny. 2020;(84):45–53. (In Russ.)

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7892 (Print)