Preview

Regional Geology and Metallogeny

Advanced search

Crustal subsidence caused by urban development: a component of geological hazard in the Saint-Petersburg region

Abstract

Surface loading resulted from intense urban development of coastal areas can cause minor land subsidence and relative sea level rise. The subsidence strongly depends on physical properties of the lithosphere, asthenosphere, and mantle, as well the loading and its change rate. The magnitude and area of the urban surface load over time were assessed for one possible scenario of urban expansion in the Saint-Petersburg region (2020–2120) with a preliminary estimation of the potential impact. The immediate elastic response and further isostatic subsidence caused by the urban loading can accelerate future flooding of the lowest coastal regions such as the Saint-Petersburg metropolitan area, and thus represent an additional geological hazard. The rate and magnitude of the elastic and isostatic depression are disputable, since they depend on different estimates of elastic properties and the effective elastic thickness of the lithosphere respectively.

About the Authors

A. V. Amantov
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Leading Researcher



L. M. Cathles
Cornell University
Russian Federation

Professor Emeritus



M. G. Amantova
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Engineer



References

1. Amantov A. V., Zhamoida V. A., Manuilov S. F. et al. Computer atlas “Geology and minerals of the eastern part of the Gulf of Finland”. Regional’naya geologiya i metallogeniya. 2002. No. 15, pp. 120–132. (In Russian).

2. Amantov A. V. Pre-Quaternary geology and tectonics of Lake Ladoga. Regional’naya geologiya i metallogeniya. 2014. No. 58, pp. 22–32. (In Russian).

3. Amantov A. V., Amantova M. G., Ryabchuk D. V. et al. On the question of Holocene development of south Lake Ladoga region. Regional’naya geologiya i metallogeniya. 2016. No. 65, pp. 37–49. URL: http://www.vsegei.ru/ru/public/reggeology_met/content/2016/65/65_03.pdf (06.02.2009). (In Russian).

4. Amantov A. V., Amantova M. G. Modeling of post-glacial development of Lake Ladoga and the Eastern part of the Gulf of Finland. Regional’naya geologiya i metallogeniya. 2017. No. 69, pp. 5–12. URL: http://www.vsegei.ru/ru/public/reggeology_met/content/2017/69/69_02.pdf (06.02.2020). (In Russian).

5. Vasenin V. A. Estimation of modern vertical movements of the earth’s surface for the purpose of determining the stability of the initial points of the leveling network of St. Petersburg and the definition of long-term precipitation of buildings and structures. Urban Development and Geotechnical Construction. 2012. No. 14, pp. 37–56. (In Russian).

6. Ventsulis L. S., Skornik Y. I., Florinskaya T. M. Sistema obrashcheniya s otkhodami: printsipy organizatsii i otsenochnye kriterii [Waste management system: principles of organization and evaluation criteria]. St. Petersburg: PIYaF RAN. 2007. 207 p.

7. Voronyuk G. Yu., Borodulina G. S., Kraynyukova I. A. et al. Water exchange in the marginal parts of the Baltic Shield and adjacent artesian basins according to isotopic and chemical data (scientific and applied aspects. Karelian Isthmus). Proceedings of the Karelian scientific center of the Russian Academy of Sciences. Petrozavodsk. 2016. No. 9, pp. 46–56. (In Russian).

8. Galaganov O., Gorshkov V., Guseva T. et al. Paradox of differences in vertical movements according to definitions by different methods. Geodesy, Cartography and Aerial Photography. 2009. Iss. 71, pp. 241–248. (In Russian).

9. Dedeev V. A., Kulikov P. K. Proiskhozhdenie struktur zemnoy kory [Origin of Earth crust structures]. Leningrad: Nauka. 1988. 264 p.

10. Landau L. D., Lifshits E. M. Teoriya uprugosti [Theory of elasticity]. Teoreticheskaya fizika v 10 t. Moscow: Nauka. 1987. Vol. 7. 258 p.

11. Love A. E. H. Matematicheskaya teoriya uprugosti [Mathematical theory of elasticity]. Perevod 4-go angliyskogo izdaniya: V. V. Bulgakova, V. Ya. Natanzona. Moscow; Leningrad. 1935. 674 p.

12. Maslennikov A. Y. Characteristics of municipal solid waste. Solid household waste: Special Newsletter. 2005. No. 1, pp. 1–3 (In Russian). URL: http://www.waste.ru/modules/section/item.php?itemid=33 (11.11.2019).

13. Sementsov S. V. Gradostroitel’stvo Sankt-Peterburga v XVIII – nachale XXI veka [Urban planning of St. Petersburg in the XVIII – early XXI century]. St. Petersburg. 2011.

14. p.

15. Tetelmin V. V., Danielov E. R. Deflection of the Earth’s crust from the weight of large reservoirs. Bulletin of the Russian Academy of Natural Sciences. 2014. No. 4, pp. 15–20. (In Russian).

16. Sharov N. V. Deep seismic studies in the South-Eastern part of the Fennoscandian Shield. Geophysical journal. 2015. Vol. 37. No. 5, pp. 104–120. (In Russian).

17. Yaduta V. A. Newest tectonics of St. Petersburg and Leningrad region. Mineral. 2006. No. 1, pp. 28–36. (In Russian).

18. Amantov, A., Fjeldskaar, W. 2013: Geological-Geomorphological features of the Baltic Region and Adjacent Areas: imprint on glacial-postglacial development. Regional geology and metallogeny. 53. 90–104. URL: http://www.

19. vsegei.ru/ru/public/reggeology_met/content/2013/53/53_10.pdf (06.02.2020).

20. Amantov, A., Amantova, M., Fjeldskaar, W. 2017: Late-Post-Glacial Tilt of the Lake Ladoga – Gulf of Finland Region and Rheology Models. Geophysical Research Abstracts. doi: 10.13140/RG.2.2.20123.77608

21. Brotchie, J. F., Silvester, R. 1969: On crustal flexure. J. Geophys. Res. 74. 5240–5252.

22. Cathles, L. M. 1975: The Viscosity of the Earth’s Mantle. Princeton Univ. Press. 386.

23. Cathles, L. M. 1980: Interpretation of postglacial isostatic adjustment phenomena in terms of mantle rheology. In Mörner, N. A. (ed.): Earth Rheology, Isostasy and Eustasy. 11–45.

24. Farrell, W. E. 1972: Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 10. 3. 761–797.

25. Fjeldskaar, W. 1990: Elastic and isostatic subsidence of the Blåsjø artificial lake, Southern Norway. Terra Nova. 2. 4. 377–381.

26. Fjeldskaar, W., Cathles, L. 1991: The present rate of uplift of Fennoscandia implies a low-viscosity asthenosphere. Terra Nova. 3. 393–400.

27. Fjeldskaar, W. 1994: Viscosity and thickness of the asthenosphere detected from the Fennoscandian uplift. Earth and Planetary Science Letters. 126. 399–410.

28. Fjeldskaar, W. 1997: The flexural rigidity of Fennoscandia inferred from the post-glacial uplift. Tectonics. 16. 596–608.

29. Fjeldskaar, W. and Amantov, A. 2017: Tilted Norwegian post-glacial shorelines require a low viscosity asthenosphere and a weak lithosphere. Regional geology and metallogeny. 70. 48–59.

30. Freeden, W., Michel, V. 2004: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Basel, Berlin, Boston. 509.

31. Ji, S., Sun, S., Wang, Q., Marcotte, D. 2010: Lamé parameters of common rocks in the Earth’s crust and upper mantle. Journal of Geophysical Research. 115. B06314. doi:10.1029/2009JB007134

32. Kachuck, S. B., Cathles, L. M. 2019: Benchmarked computation of time-domain viscoelastic Love numbers for adiabatic mantles. Geophysical Journal International. 218. 3. 2136–2149. https://doi.org/10.1093/gji/ggz276

33. Kaufmann, G., Amelung, F. 2000: Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada. Journal of Geophysical Research. 105. B7. 16341–16358.

34. Kierulf, H. P., Steffen, H., Simpson, M. J. R. et al. 2014: A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. Journal of Geophysical Research: Solid Earth. 119. 8. 6613–6629. doi: 10.1002/2013JB010889

35. Longwell, C. R. 1960: Geologic setting of Lake Mead. In Smith, O., Vetter, C. P., Cummings, C. B. (eds.): Comprehensive Survey of Sedimentation in Lake Mead, 1948–49. Washington. 11–20.

36. McKenzie, D. 2016: A note on estimating Te from Bouguer coherence. GEM – International Journal on Geomathematics. 7. 1. 103–116.

37. Melini, D., Gegout, P., Spada, G, King, M. 2014. REAR – a regional ElAstic Rebound calculator. 2014. User manual for version 1.0. URL: http://hpc.rm.ingv.it/rear/REAR-v1.0-User-Guide.pdf (19.10.2019).

38. Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., Mitchum, G. T. 2018: Climate-change-driven accelerated sea-level rise detected in the altimeter era. PNAS. doi: 10.1073/pnas.1717312115

39. Peltier, W. R., Argus, D. F., Drummond, R. 2015: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth.120. 450–487.

40. Pérez-Gussinyé, M., Watts, A. B. 2005: The long-term strength of Europe and its implications for plate-forming processes. Nature. 436. doi:10.1038/nature03854

41. Poutanen, M., Ollikainen, M., Koivula, H., Bilker, M., Jokela, J., Virtanenet, H. 2004: Global periodic effects in GPS time series. Proceedings of the workshop: the state of GPS vertical positioning precision: Separation of Earth processes by space geodesy (April 2–4, 2003, Luxembourg). Luxembourg. 137–142.

42. Puura, V., Amantov, A., Tikhomirov, S., Laitakari, I. 1996: Latest events affecting the Precambrian basement, Gulf of Finland and surrounding areas. Geological Survey of Finland. Spec. Paper 21. 115–125.

43. Richards, M. A., & Lenardic, A. 2018: The Cathles parameter (Ct): A geodynamic definition of the asthenosphere and implications for the nature of plate tectonics. Geochemistry, Geophysics, Geosystems. 19. 4858–4875. https://doi.org/10.1029/2018GC007664

44. Steffen, H., Wu, P. 2011: Glacial isostatic adjustment in Fennoscandia – a review of data and modelling. Journal of Geodynamics. 52. 3–4. 169–204.

45. Santos, S. M., Cabral, J. J. S. P., Filho, I. D. S. P. 2012: Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS. Nat Hazards. 64. 421–439. https://doi.org/10.1007/s11069-012-0247-9.10.1007/s11069-012-0247-9

46. Zhang, Y., Gong, H., Gu, Z., Wang, R., Li, X., Zhao, W. 2014: Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China. Hydrogeology Journal. 22. 397–409. doi: 10.1007/s10040-013-1069-x


Review

For citations:


Amantov A.V., Cathles L., Amantova M.G. Crustal subsidence caused by urban development: a component of geological hazard in the Saint-Petersburg region. Regional Geology and Metallogeny. 2020;(81):83–96. (In Russ.)

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7892 (Print)