Fluid-explosion ultramafic rocks of the Middle Timan dyke complex and their paragenetic association with carbonatite
Abstract
Fluid-explosion structure, including carbonatite, explosive ultramafic rocks of the dyke complex and alkaline metasomatite, has been identified in the Middle Timan. Fluid-explosion structure was formed due to carbonatite magmatism and its fluid derivatives.
About the Authors
I. I. GolubevaRussian Federation
Candidate of Geological and Mineralogical Sciences, Senior Researcher
D. N. Remizov
Russian Federation
Doctor of Geological and Mineralogical Sciences, Deputy Head of the Sector
I. N. Burtsev
Russian Federation
Candidate of Geological and Mineralogical Sciences, Interim Director
V. N. Filippov
Russian Federation
Senior Researcher
A. S. Shuyskiy
Russian Federation
Junior Researcher
References
1. Bryanchaninova N. I., Makeev A. B., Larionova Yu. O. Sm-Nd isotope systematics of lamprophyres of Middle Timan. New horizons in the study of processes of magma and ore formation. Moscow: IGEM. 2010. Pp. 414–415. (In Russian).
2. Golubeva I. I., Filippov V. N., Burtsev I. N. Metasomatic rare-earth and rare-metal mineralization in ultramafic dyke complex in Middle Timan (Chetlass Rise). Modern problems of theoretical, experimental and applied mineralogy (Yushkinsky readings – 2018) Syktyvkar: IG Komi NTS UrO RAN. 2018. 278 p. (In Russian).
3. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Mezenskaya. List Q-39 – Nar’yan-Mar. Ob”yasn. zapiska [State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Series Mezenskaya. Sheet Q-39 – Naryan-Mar. Explanatory note]. St. Petersburg: Kartograficheskaya fabrika VSEGEI 2015. 393 p.
4. Dovzhikov N. A., Dovzhikova E. G., Smyslov S. A. Clinopyroxenes from alkaline-ultrabasic rocks of the dyke complex of Middle Timan. Zapiski VMO. 1985. Pt. 114. Iss. 5. Pp. 569 – 605. (In Russian).
5. Dovzhikova E. G., Bakulina L. P. Composition and structure of xenocrystals and deep inclusions in picrites of the Chetlas stone. Izvestiya Komi NTs. 2018. No. 2, pp. 56–63. (In Russian).
6. Yevdokimov A. N., Sirotkin A. I., Chebayevskiy V. S. Late Paleozoic alkaline-ultrabasic magmatism of the Svalbard archipelago. Zapiski Gornogo instituta. 2013. Vol. 200. Pp. 201–209. (In Russian).
7. Ivensen Yu. P. Magmatizm Timana i poluostrova Kanin [Magmatism of Timan and the Kanin Peninsula]. Moscow; Leningrad: Nauka. 1964. 126 p.
8. Kostyukhin M. I., Stepanenko V. I. Baykal’skiy magmatizm Kanino-Timanskogo regiona [Baikal magmatism of the Kanino-Timan region]. Leningrad: Nauka. 1987. 232 p.
9. Koval’chuk N. S., Shumilova T. G., Stepanenko V. I. Redkozemel’naya mineralizatsiya v karbonatitakh Kos’yuskogo massiva (Sredniy Timan). Zapiski RMO. 2013. Vol. 142. No. 3, pp. 109–132. (In Russian).
10. Lapin A. V., Tolstov A. V., Lisitsin D. V. Kimberlity i konvergentnye porody [Kimberlites and convergent rocks]. Moscow: IMGRE. 2004. 224 p.
11. Lesnov F. P. Redkozemel’nye elementy v ul’tramafitakh i mafitovykh porodakh i ikh mineralakh [Rare earth elements in ultramafic and mafic rocks and their minerals]. Novosibirsk: Geo. 2007. 401 p.
12. Makeev A. B., Lebedev V. A., Bryanchaninova N. I. Magmatity Srednego Timana [Magmatites of Middle Timan]. Ekaterinburg: UrO RAN. 2008. 348 p.
13. Makhlayev L. V., Parmuzin N. M., Golubeva I. I. Minett diatremes of the Chetlas Stone (Middle Timan) in connection with the problem of diamond content. Problems of forecasting, prospecting and studying mineral deposits on the threshold of the 21st century. Voronezh: Izd-vo Voronezh. gos. un-ta. 2003. Pp. 401–403. (In Russian).
14. Rass I. T. Geochemical features of carbonatites – an indicator of the composition, evolution and differentiation of mantle magmas. Geokhimiya. 1998. No 2, pp. 137–146. (In Russian).
15. Sablukov S. M., Kaminskiy F. M., Sablukova L. I. Ancient diamondiferous igneous rocks of the non-kimberlite type. Problems of sources of deep magmatism and plumes. Irkutsk. 2005. Pp. 116–133. (In Russian).
16. Sablukov S. M. About petrochemical series of kimberlite rocks. DAN SSSR. 1990. Vol. 313. No. 4, pp. 935–939. (In Russian).
17. Stepanenko V. I. Late and post-magmatic changes in alkaline picrites of Middle Timan. Vestnik IG Komi NTs UrO RAN. 2015. No. 7, pp. 1–5. (In Russian).
18. Tugovik G. I. Flyuidno-eksplozivnyye struktury i ikh rudonosnost’ [Fluid-explosive structures and their ore content] Moscow: Nauka. 1984. 192 p.
19. Udoratina O. V., Travin A. V. Alkaline picrites of the Chetlas complex of Middle Timan: Ar-Ar data. Ore potential of alkaline, kimberlite and carbonatite magmatism: Materials of the XXX International Conference. Moscow. 2014. Pp. 82–84. (In Russian).
20. Shumilova T. G. Isotopic composition of carbon and oxygen carbonates of the Kosyu massif (Middle Timan).
21. Vestnik Komi NTs UrO RAN. 2012. No. 4, pp. 9–13. (In Russian).
22. Shcheka S. A., Volokhin Yu. G., Karabtsov A. A. The first discovery of explosive alkaline picrites in Nadanhada Alin (China). Dokl. RAS. 2009. Vol. 429. No. 3, pp. 383–387. (In Russian).
23. Tischendorf, G. 2007: True and brittle micas: composition and solid-solution series. In Tischendorf, G., Förster, H. -J., Gottesmann, B., Rieder, M. (eds.): Mineralogical Magazine. 71 (3). 285–320.
24. Lindsley, D. N. 1983: Pyroxene thermometry. American Mineralogist. 68. 5–6. 66–94.
Review
For citations:
Golubeva I.I., Remizov D.N., Burtsev I.N., Filippov V.N., Shuyskiy A.S. Fluid-explosion ultramafic rocks of the Middle Timan dyke complex and their paragenetic association with carbonatite. Regional Geology and Metallogeny. 2019;(80):30–44. (In Russ.)