Sulfur release during rock metamorphism in the Earth’s crust: application to gold deposits genesis
Abstract
Understanding of sulfur source during metamorphic rock reworking is important for understanding the complete cycle of ore genesis in sulfide deposits. The T-P limits of pyrite-pyrrhotite transformation, which released sulfur as a result of metamorphism, are discussed in the paper. Results of the study show that most of sulfur is released in a narrow interval of temperature that transforms chlorite to muscovite and simultaneously releases H2O. Most of sulfur and water for hydrothermal fluids, when gold ore deposits can also be formed, are generated under metamorphism from greenschist to the lowertemperature part of amphibolite facies. Tectonic positions for forming such ore deposits and role of carbonic-sulfide sediments and deformations also are shown.
About the Author
S. I. TurchenkoRussian Federation
Chief Researcher, Doctor of Geological and Mineralogical Sciences
References
1. Glebovickij V. A. Problemy ehvolyucii metamorficheskih processov v podvizhnyh oblastyah [Problems of evolution metamorphic processes in mobile regions]. Leningrad: Sciences. 1973. 128 p.
2. Kicul V. I. Metamorphism of Ladoga formation carbonate rocks. Works of the Precambrian Laboratory of the Academy of Sciences of the USSR. 1959. Vol. 8. P. 370–385. (In Russian).
3. Korzhinsky D. S. The ratio between oxygen activity, acidity and reduction potential during endogenous ore formation. Izvestia AN SSSR. Seriya geol. 1963. No 3, pp. 54–62. (In Russian).
4. Migatshev I. F., Karpenko I. A., Ivanov A. I. i dr. Sukhoi Log gold deposit – reassessment and evaluation of the forecast of a single field and area. Otechestvennaya geologiya. 2008. No 2, pp. 55–68. (In Russian).
5. Moskovchenko N. I., Turchenko S. I. Metamorfizm kianit-sillimanitovogo tipa i sul’fidnoe orudenenie (Sev. Kareliya) [Metamorphism of kyanite-sillimanite type and sulphide mineralization (North. Karelia)]. Leningrad: Nauka. 1975. 137 p.
6. Turchenko S. I. Metamorphogenic ore formation in the ore-bearing tectonic structures of the Precambrian. Planet Earth: Encyclopedic Reference. Vol. 2 «Mineragenia». St. Petersburg: VSEGEI. 2008. P. 116–129. (In Russian).
7. Barley, M. E., Krapez, B., Groves, D. I. et al. 1998: The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precambrian Res. 91. 65–90.
8. Chen, H. Y., Chen, Y. J., Baker, M. 2012: Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, northwest China: Implications for ore genesis and mineral exploration. Chemical Geology. 310. 1–11.
9. Collins, W. J. 2002: Hot orogens, tectonic switching, and creation of continental crust. Geology. 30. 535–538.
10. Connolly, J. A. D. and Cesare, B. 1993: C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. J. Metamorph. Geol. 11. 379–388.
11. Craig, J. R. and Vokes, F. M. 1993: The metamorphism of pyrite and pyritic ores: an overview. Mineralogical Magazine. 57. 3–18.
12. Evans, K. A., Phillips, G. N. and Powell, R. 2006: Rock-buffering of auriferous fluids in altered rocks associated with the Golden Mile-style mineralization, Kalgoorlie gold field, Western Australia. Econ. Geol. 101. 805–818.
13. Ferry, J. M. 1981: Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidation during regional prograde metamorphism. Am. Mineral. 66. 908–931.
14. Glasson, M. J. and Keays, R. R. 1978: Gold mobilization during cleavage development in sedimentary rocks from the auriferous slate belt of central Victoria, Australia: some important boundary conditions. Econ. Geol. 73. 496–511.
15. Goldfarb, R. J., Baker, T., Dube, B., Groves, D. I. et al. 2005: Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ. Geol. 100. 407–450.
16. Groves, D. I. 1993: The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineral. Deposita. 28. 366–374.
17. Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M. et al. 1998: Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 13. 7–27.
18. Haeussler, P. J., Goldfarb, R. J., Snee, L. C. 1995: Link between ridge subduction and gold mineralization in southern Alaska. Geology. 23. 995–998.
19. Keays, R. R. 1987: Principles of mobilization (dissolution) of metals in mafic and ultramafic rocks – the role of immiscible magmatic sulphides in the generation of hydrothermal gold and volcanogenic massive sulphide deposits. Ore Geol. Rev. 2. 7–63.
20. Kolb, J., Kisters, A. F. M., Hoernes, S. and Meyer, F. M. 2000: The origin of fluids and nature of fluid-rock interaction in midcrustal auriferous mylonites of the Renco mine, southern Zimbabwe. Mineral. Deposita. 35. 109–125.
21. Krapez, B. and Hand, J. L. 2008: Late Archaean deepmarine volcaniclastic sedimentation in an arc-related basin: the Kalgoorlie Sequence of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. Precambrian Res. 161. 89–113.
22. Large, R. R., Danyushevsky, L., Hollit, C. et al. 2009: Gold and trace element zonation in pyrite using a laser imagingtechnique: implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits. Econ. Geol. 104. 635–668.
23. Loucks, R. R. and Mavrogenes, J. A. 1999: Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science. 284. 2159–2163.
24. Morelli, R., Creaser, R. A., Seltman, R. et al. 2007: Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology. 35. 795–798.
25. Nesbitt, B. E. 1980: Metamorphic zonation of sulfides, oxides, and graphite in and around the orebodies at Ducktown, Tennessee. Econ. Geol. 75. 1010–1021.
26. Phillips, G. N., Brown, I. J. and Groves, D. I. 1987: Some requirements for the Golden Mile, Kalgoorlie: significance to the metamorphic replacement model for Archean gold deposits. Can. J. Earth Sci. 24. 1643–1651.
27. Phillips, G. N. and de Nooy, D. 1988: High-grade metamorphic processes which influence Archaean gold deposits, with particular reference to Big Bell, Australia. J. Metamorph. Geol. 6. 95–114.
28. Phillips, G. N. and Powell, R. 1993: Link between gold provinces. Econ. Geol. 88. 1084–1098.
29. Pitcairn, I. K., Teagle, D. A. H., Craw, D. et al. 2006: Sources of metals and fluids in orogenic gold deposits: insights from the Otago and Alpine Schists, New Zealand. Econ. Geol. 101. 1525–1546.
30. Rosenberg, J. L., Spry, P. G., Jacobson, C. E. et al. 2000: The effects of sulfidation and oxidation during metamorphism on compositionally varied rocks adjacent to the Bleikvassli Zn-Pb-(Cu) deposit, Nordland, Norway. Mineral. Deposita. 35. 714–726.
31. Sibson, R. H., Robert, F. and Poulsen, K. H. 1988: High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology. 16. 551–555.
32. Tomkins, A. G. and Mavrogenes, J. A. 2001: Redistribution of gold within arsenopyrite and lollingite during pro- and retrograde metamorphism: application to timing of mineralization. Econ. Geol. 96. 525–534.
33. Tomkins, A. G., Pattison, D. R. M. and Zaleski, E. 2004: The Hemlo gold deposit, Ontario: an example of meltingand mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ. Geol. 99. 1063–1084.
34. Tomkins, A. G. and Grundy, C. 2009: Upper temperature limits of orogenic gold deposit formation: constraints from the granulite-hosted Griffin’s find deposit, Yilgarn Craton. Econ. Geol. 104. 669–685.
35. Yardley, B. W. D. 2005: Metal concentrations in crustal fluids and their relationship to ore formation. Econ. Geol. 100. 613–632.
Review
For citations:
Turchenko S.I. Sulfur release during rock metamorphism in the Earth’s crust: application to gold deposits genesis. Regional Geology and Metallogeny. 2019;(77):60–66. (In Russ.)