Geological structure of caldera-type lithiumbearing Thacker Pass type clay deposits and its possible analogues (Nevada, North America)
https://doi.org/10.52349/0869-7892_2024_98_90-100
Abstract
The growing demand for lithium is driven by the transition to renewable energy sources. In this regard, it is relevant to study new deposits and technologies for lithium mining in order to ensure a stable supply to the market and support environmentally sustainable production. This article studies the migration paths of lithium-bearing brines and the mechanism of clays formation with a high lithium content: hectorite, illite, and smectite. A generalized model for the formation of the Tucker Pass caldera-type lithium-bearing clay deposits in North America is described. Particular attention is paid to the role of hydrothermal fluids as a potential additional source of lithium “supply” to the caldera basin. Key criteria characterizing commercial accumulations of lithium of this type are listed.
About the Authors
D. A. PogrebnaiaRussian Federation
Pogrebnaia Daria Aleksandovna – PhD Student, IEC SB RAS;, Energy Craft LLC
128 ul. Lermontova, Irkutsk, Russia, 664033;
8, str. 1 Bolshoy Savvinski lane, Moscow, Russia, 119435.
A. G. Vakhromeev
Russian Federation
Vakhromeev Andrei Gelievich – Doctor of Geological and Mineralogical Sciences, Professor, Head of Laboratory, IEC SB RAS; INRTU
128 ul. Lermontova, Irkutsk, Russia, 664033;
83 ul. Lermontova, Irkutsk, Russia, 664074
V. S. Kovalevskiy
Russian Federation
Kovalevskiy Vatslav Sergeevich – PhD Student, MSU; Energy Craft LLC
1 Leninskie Gory, Moscow, Russia, 119991;
8, str. 1 Bolshoy Savvinski lane, Moscow, Russia, 119435
References
1. Boyarko G. Yu., Khat’kov V. Yu., Tkacheva E. V. Syr’evoy potentsial litiya Rossii. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2022, vol. 333, no. 12, pp. 7–16.
2. Goleva G. A. Geyzery i goryachie ozera Kronotskogo zapovednika (Kamchatka). Putevoditel’. Moscow, Progress-Akademiya, 1993, 64 p.
3. Vakhromeev A. G., Litvinova I. V., Misyurkeeva N. V., Alekseev S. V., Pogrebnaya D. A. K mineragenii litiya gidromineral’noy provintsii Sibirskoy platformy. Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy nauchnoy konferentsii. Vyp. 20. Irkutsk, IZK SO RAN, 2022, pp. 43–45.
4. Kiryukhin A. V. Magmaticheskiy fraking i gidrotermal’nye sistemy pod aktivnymi vulkanami. Materialy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem «Geotermal’naya vulkanologiya, gidrogeologiya, geologiya nefti i gaza» (Geothermal Volcanology Workshop 2020), 3–8 sentyabrya 2020 g. Petropavlovsk-Kamchatskiy, IViS DVO RAN, 2020, pp. 27–31.
5. Vakhromeev A. G., Zelinskaya E. V., Litvinova I. V., Pogrebnaya D. A. Model’ vtorichnogo kontsentrirovaniya litienosnykh rassolov v kipyashchikh flyuidnykh sistemakh magmatogenno-osadochnykh basseynov gidromineral’noy provintsii Sibirskoy platformy. Materialy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem «Geotermal’naya vulkanologiya, gidrogeologiya, geologiya nefti i gaza» (Geothermal Volcanology Workshop 2023), 5–10 sentyabrya 2020 g. Petropavlovsk-Kamchatskiy, IViS DVO RAN, 2023, pp. 27–31.
6. Romanyuk T. V., Tkachev A. V. Geodinamicheskiy stsenariy formirovaniya krupneyshikh mirovykh neogenchetvertichnykh bor-litienosnykh provintsiy. Moscow, Svetoch Plyus, 2010, 304 p.
7. Rychagov S. N. Gigantskie gazo-gidrotermal’nye sistemy i ikh rol’ v formirovanii parodominiruyushchikh geotermal’nykh mestorozhdeniy i rudnoy mineralizatsii. Vulkanologiya i seysmologiya, 2014, no. 2, pp. 3–28.
8. Topchieva O. M., Petrovskiy V. A., Sukharev A. E. Usloviya obrazovaniya mineral’nykh vklyucheniy v gidrotermal’nykh metasomatitakh g. Dvugorboy, Yuzhnaya Kamchatka. Vestnik Permskogo universiteta, 2018, vol. 17, no. 1, pp. 1–10.
9. Benson T. R., Coble M. A., Dilles J. H. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. Science Advances, 2023, vol. 9, no. 35, pp. 1–10.
10. Castor S. B., Henry C. D. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: Geologic, mineralogical, and geochemical characteristics and possible origin. Minerals, 2020, vol. 10, no. 1, pp. 68.
11. DiPietro J. A. Geology and landscape evolution: General principles applied to the United States. Elsevier, 2018.
12. Gallup D. L. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery. Ore geology reviews, 1998, vol. 12, no. 4, pp. 225–236.
13. Henry C. D., Castor S. B., Starkelet W. A. et al. Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA. Geosphere, 2017, vol. 13, no. 4, pp. 1066–1112.
14. Gruber P. W., Medina P. A., Keoleian G. A. et al. Global lithium availability: A constraint for electric vehicles? Journal of Industrial Ecology, 2011, vol. 15, no. 5, pp. 760–775.
15. Kesler S. E., Gruber P. W., Medina P. A. et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore geology reviews, 2012, vol. 48, pp. 55–69.
16. Ingraffia J. T., Ressel M. W., Benson T. R. Thacker Pass lithium clay deposit, McDermitt caldera, north-central Nevada: Devitrification of McDermitt Tuff as the main lithium source. Geological Society of Nevada Special Publication, 2020, pp. 395–410.
17. Lithium Americas Expands Resource at Thacker Pass and Increases Phase 1 Capacity to Target 40,000 tpa Lithium Carbonate [Electronic resource]. URL: https://lithium-argentina.com/files/doc_news/Lithium-Americas-Expands-Resource-at-Thacker-Pass-and-Increases-Phase-1-Capacity-to-Target-40000-tpa-Lithium-Carbonate-10-07-2021-2021.pdf (12.04.2024).
18. Benson T. R., Coble M. A., Rytuba J. J. et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature communications, 2017, vol. 8, no. 1, pp. 270.
19. Li C., Li Z., Wu T. et al. Metallogenic Characteristics and Formation Mechanism of Naomugeng Clay Type Lithium Deposit in Central Inner Mongolia, China. Minerals, 2021, vol. 11, iss. 3, pp. 238.
20. Mineral Commodity Summaries 2024. U. S. Geological Survey, 2024, 216 р.
21. Shaw R. A. Global lithium (Li) mines, deposits and occurrences. Keyworth, Nottingham British Geological Survey, 2021.
22. Tabelin C. B., Dallas J., Casanova S. et al. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering, 2021, vol. 163, pp. 106743.
23. Petrov V. A., Andreeva O. V., Poluektov V. V., Kovalenko D. V. Uranium-Bearing Volcanic Structures: Streltsovka (Russia), Xiangshan (China), and McDermitt (United States). A Comparative Analysis of the Petrology of Felsic Volcanics and the Composition of Near-Ore Metasomatites. Geology of Ore Deposits, 2021, vol. 63, pp. 1–28.
Review
For citations:
Pogrebnaia D.A., Vakhromeev A.G., Kovalevskiy V.S. Geological structure of caldera-type lithiumbearing Thacker Pass type clay deposits and its possible analogues (Nevada, North America). Regional Geology and Metallogeny. 2024;(98):90-100. (In Russ.) https://doi.org/10.52349/0869-7892_2024_98_90-100