The nature of the distribution features of diamond-bearing kimberlites
https://doi.org/10.52349/0869-7892_2023_96_37-45
Abstract
The evidence obtained for hot heterogeneous accretion of the Earth indicates the formation of the lithosphere of ancient platforms, kimberlites, and diamonds as a result of the fractionation of a layered global magma ocean, which arose due to the massive impact heat release during accretion. This explains the confinement of diamond-bearing kimberlites only to ancient platforms. The worldwide distribution of the magma ocean determined the presence of kimberlites on all ancient platforms. Their bottom residual magmatic origin is the reason for the small volume of kimberlite bodies and their relatively late formation. Diamonds crystallized as a result of the accumulation of carbon in residual melts. Extremely low viscosity of the bottom peridotite layer of the magma ocean determined the low rate of carbon diffusion in them and the formation of early octahedral diamonds through layer-by-layer tangential growth. The accumulation of multivalent elements in residual melts during fractionation led to an increase in the viscosity of the melts by thousands of times and to the formation of
diamond rhombic dodecahedrons and cubes as a result of radial growth. A decrease in the rate of carbon diffusion with an increase in the viscosity of the melts caused a reduction in the area of the formed layers on diamonds and the appearance of their rounded crystals. A slow decrease in temperature in the early magma ocean led to the long-term crystallization of giant diamonds and their predominantly octahedral cut.
About the Author
V. S. ShkodzinskyRussian Federation
Vladimir Stepanovich Shkodzinsky, Doctor of Geological and Mineralogical Sciences, Leading Researcher
677000; 39 Prospесt Lenina; Respublika Sakha (Yakutiya); Yakutsk
References
1. Argunov K. P. Almazy Yakutii [Yakutia diamonds]. Novosibirsk, Izd-vo AN SSSR, 2005, 402 p.
2. Dobretsov N. L. Vvedenie v global’nuyu petrologiyu [Introduction in global petrology]. Novosibirsk, Nauka, 1980, 240 p.
3. Zinchuk N. N., Koptil’ V. I. Tipomorfizm almazov Sibirskoy platformy [Tipomorfism of diamonds of Siberian platform]. Moscow, Nedra, 2003, 603 p.
4. Schackii B. S., Ragosin A. L., Skusovatov C. Yu., Kosmenko O. A., Jagoutz E. Iztopno-geokhimicheskie svidetel’stva protolitov almazonosnykh porod kokchetavskoy subduktsionno-kollizionnoy zony (Severnyy Kazakhstan) [Izotopno-gochemical evidences of protoliths of rocks of kokchetav zone (Nord Kazaxstan)]. Geology and Geophysics, 2021, no. 5, pp. 678–689, DOI: 10.15372/GiG2020200
5. Belov C. V., Lapin C. V., Tolstov A. V., Frolov A. A. Minerageniya latformennogo magmatizma (trappy, karbonatity, kimberlity) [Mineragenia of platform magmatizm (trapps, carbonatites, kimberlites)]. Novosibirsk, Izd-vo SO RAN, 2008, 537 p.
6. Orlov Yu. L. Mineralogiya almazov [Mineralogy of diamonds]. Moscow, Nauka, 1973, 223 p.
7. Ringvud A. E. Proiskhozhdenie Zemli i Luny [Genesis of the Earth and Moon]. Moscow, Nedra, 1982, 294 p.
8. Grakhanov S. A., Shatalov V. I., Shtyrov V. A., Kychkin V. R., Suleymanov A. M. Rossypi almazov Rossii [Diamond placeris of Russia]. Novosibirsk, GEO, 2007, 240 p.
9. Smelova G. B. Genezis agregatov almazov iz kimberlitovykh trubok Yakutii [Genesis of diamond agregates from kimberlites of Yakutia]. Yakutsk, Izd-vo YaNTs SO RAN, 1994, 88 p.
10. Sokol A. G., Tomilenko A. A., Bul’ba T. A., Sokol I. A., Zaikin P. A., Sobolev N. V. Sostav flyuida vosstanovlennoy mantii po eksperimental’nym dannym i rezul’tatam izucheniya flyuidnykh vklyucheniy v almazakh [Compositiion of fluid in restoratioin mantle on ehperimental data and results of study of inclusions in diamonds]. Geology and Geophysics, 2020, no. 5–6, pp. 810–825, DOI: 10.15372/GiG2020103
11. Surkov N. V., Zinchuk N. N. Ustoychivost’ glubinnykh paragenezisov, protsessy magmoobrazovaniya i proiskhozhdenie kimberlitov [Stability of deep paragenesis, processes of magma origin and genesis of kimberlites]. Problems of diamond geology and theirs solutions. Voronezh, Izd-vo VGU, 2000, pp. 101–128.
12. Shkodzinskiy V. S. Genezis litosfery i almazov. Model’ goryachey geterogennoy akkretsii Zemli [Genesis of lithosphere and diamonds. Model of hot heterogeneous akkretion of the Earth]. Saarbrucken, Palmarium Academic Publishing, 2015, 687 p.
13. Shkodzinskiy V. S. Petrologiya litosfery i kimberlitov (model’ goryachey geterogennoy akkretsii Zemli) [Petrology of lithosphera and kimberlites (model of hot heterogeneous akkretion of the Earth)]. Yakutsk, Izd-vo SVFU, 2014, 452 p.
14. Shkodzinskiy V. S. Fazovaya evolyutsiya magm i petrogenesis [Phase evolution of magmas and petrogenesis]. Moscow, Nauka, 1985, 232 p.
15. Shmidt O. Yu. Proiskhozhdenie Zemli i planet [Genesis of the Earth and planet]. Moscow, Izd-vo AN SSSR, 1962, 132 p.
16. Harris P. G., Tozer D. C. Fractionation of iron in the Solar system. Nature, 1967, vol. 215, no. 5109, pp. 1449–1451.
17. Hofmeister A. M. Effect of hadean terrestrial magma ocean on crust and mantle evolution. Journal of Geophysical Research, 1983, vol. B88, no. 6, pp. 4963–4983.
18. O’Neil H. S. Oxigen fugacity and siderophile elements in the mantle: implications for the origin of the Earth. Meteoritics, 1990, vol. 25, no. 4, pp. 395.
Review
For citations:
Shkodzinsky V.S. The nature of the distribution features of diamond-bearing kimberlites. Regional Geology and Metallogeny. 2023;(96):37-45. (In Russ.) https://doi.org/10.52349/0869-7892_2023_96_37-45