Preview

Regional Geology and Metallogeny

Advanced search

Evolution of morphogenesis and sedimentation processes in the coastal shelf of Beringia during Late Quaternary climatic changes

https://doi.org/10.52349/0869-7892_2024_100_95-114

Abstract

The paper focuses on the problems of palaeogeography of the Bering Sea coastal shelf in the Neopleistocene–Holocene based on new geological and geophysical data obtained in 2021 by Karpinsky Institute during offshore operations, including 1,150 km of seismic profiling, side-scan sonar profiling, multibeam echo sounding, and underwater video observation. They identified local acoustic reflectors in the seismic records and associated them with marine isotope stages, which characterized and traced the distribution of five seismic units during the Pliocene–Quaternary time. A vibrating core and box corer sampled the deposits of all seismic units, except the oldest one. The analysis of seismic profiles traced the palaeogeographic development of the Bering coastal shelf dating from the Middle Neopleistocene. There were detected traces of six regressive phases in the Middle and Late Neopleistocene deposits, which apparently caused the Bering Isthmus Formation. The formation time of end-moraine ridges, including buried ones, was determined. In the Gulf of Anadyr, this is the end of the Middle Neopleistocene, in the Bering Strait — the second stage of the Upper Neopleistocene. There was established the amplitude of crustal subsidence (–60 m) in the eastern part of the Gulf of Anadyr in the Middle Neopleistocene.

About the Authors

V. A. Zhamoida
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Vladimir A. Zhamoida - PhD (Geology and Mineralogy), Leading Researcher

Saint Petersburg

Scopus Author ID 6602868529

ResearcherID B-5957-2016

RSCI Author ID 155951



A. Yu. Sergeev
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Aleksandr Yu. Sergeev - PhD (Geology and Mineralogy), Senior Researcher

Saint Petersburg

Scopus Author ID 57207727876

ResearcherID E-3962-2017

RSCI Author ID 881607



L. M. Budanov
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Leonid M. Budanov - PhD (Geography) Researcher

Saint Petersburg

Scopus Author ID 57195337053

ResearcherID E-3946-2017

RSCI Author ID 918305



D. V. Ryabchuk
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Darya V. Ryabchuk - PhD (Geology and Mineralogy), Head of Department

Saint Petersburg

Scopus Author ID 23478132400

ResearcherID K-7372-2012

RSCI Author ID 155952



A. G. Grigoriev
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Andrey G. Grigoriev - PhD (Geology and Mineralogy), Leading Researcher

Saint Petersburg

RSCI SPIN-code 1378-4322

RSCI Author ID 303381



I. A. Neevin
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Igor A. Neevin - Acting Head, Center for Marine Geology, Lithogeodynamics and Minerageny of Sedimentary Basins

Saint Petersburg

Scopus Author ID 57194335576

ResearcherID E-4899-2017

RSCI Author ID 1068477



M. A. Mustafin
All-Russian Geological Research Institute of A. P. Karpinsky
Russian Federation

Mark A. Mustafin - Second Сategory Geologist

Saint Petersburg

RSCI Author ID 1212640



References

1. Avenarius I. G. Sea level change in the northern part of Beringia in the Late Pleistocene and Holocene. Sea level change. Moscow: Publishing House of Moscow State University; 1982. P. 134–145. (In Russ).

2. Anadyr basin (north-east of Eurasia, Bering Sea coast) geological structure, tectonic evolution and oil and gas potential / M. P. Antipov [et al.]. Apatity: KNC RAS; 2008. 53 p. (In Russ).

3. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the waters of the World Ocean: the Bering Sea. Drilling and Oil. 2018; (4): 4–12. (In Russ.).

4. State Geological Map of the Russian Federation. Scale 1 : 1,000,000 (third generation). The Chukchi series. Sheet R-1, 2 — Wrangel Island. An explanatory note / S. A. Bondarenko [et al.]. St. Petersburg: VSEGEI Cartographic Factory; 2014. 144 p. (In Russ.).

5. Verkhovskaya N. B. Pleistocene of Chukotka. Vladivostok: Far Eastern Scientific Center of the USSR Academy of Sciences; 1986. 116 p. (In Russ.).

6. State geological map of the Russian Federation scale 1 : 1,000,000 sheets Q-60,1 — Anadyr (new series). An explanatory note / Yu. A. Vladimirtseva [et al.]. St. Petersburg: Publishing house of VSEGEI Cartographic Factory; 2001. 218 p. (In Russ.).

7. Hasanov Sh. Sh. The structure and history of the formation of frozen rocks of Eastern Chukotka. Moscow: Nauka; 1969. 168 p. (In Russ.).

8. Gershanovich D. E. Thickness of modern bottom sediments and the rate of sedimentation in the Bering Sea. Proc. VNIRO. 1965; (LVII): 261–269. (In Russ.).

9. Goloudin R. I. On glacial formations on the shelf of the northern part of Kresta Bay (Bering Sea). Geomorphology. 1981; (1): 57–58. (In Russ.).

10. Using bromine as an indicator of paleosalinity of bottom sediments on the example of the Baltic, White, East Siberian and Bering Seas / A. G. Grigoriev [et al.]. Geology of the seas and oceans: Proceedings of the XXV International Scientific Conference (School) on Marine Geology. Vol. IV. Moscow: IO RAS; 2023. P. 39–42. (In Russ.).

11. New data on the history of development of the southeastern Baltic Sea from the late glacial period to the present / A. G. Grigoriev [et al.]. Regional Geology and Metallogeny. 2009; (40): 103–114. (In Russ.).

12. Development of the natural environment of the southern part of the Chukchi Sea in the Holocene / E. A. Gusev [et al.]. Oceanology. 2014; 54 (4): 505–517. https://doi.org/10.7868/S0030157414030010 (In Russ.).

13. Degtyarenko Yu. P., Puminov A. P., Blagoveshchensky M. G. Coastlines of the East Arctic seas in the Late Pleistocene and Holocene. Fluctuations in the level of seas and oceans over 15,000 years. Moscow: Nauka; 1982. P. 179–185. (In Russ.).

14. Diatoms of the USSR (fossil and modern). Vol. I. / [Eds.] A. I. Proshkina-Lavrenko. Leningrad: Nauka; 1974. 403 p. (In Russ.).

15. Modern sedimentation in the cryolithozone of the northwestern part of the Gulf of Anadyr (Bering Sea) / O. V. Dudarev [et al.]. Pacific Geology. 2001; 20 (3): 12–25. (In Russ.).

16. Dunaev N. N. Morphostructure of the Bering Strait. Geology and geomorphology of shelves and continental slopes. Moscow: Nauka; 1985. P. 77–85. (In Russ.).

17. Zykov A. A., Gusev E. A. Buried paleovalley network of the Chukotka shelf. Problems of the Arctic and Antarctic. 2015; 3 (105): 66–76. (In Russ.).

18. The last glaciation in the north of Eastern Chukotka and paleoceanography of the Northern Pacific / S. A. Laukhin [et al.]. Doklady of the Russian Academy of Sciences. 2006; 411 (3): 405–409. (In Russ.).

19. Lisitsyn A. P. Processes of modern sedimentation in the Bering Sea. Moscow: Nauka; 1966. 574 p. (In Russ.).

20. Makarov A. S., Bolshiyanov D. Yu. Fluctuations in the level of the Arctic seas of Russia in the Holocene. Problems of Pleistocene paleogeography and stratigraphy. Iss. 3. Moscow: Faculty of Geography, Moscow State University; 2011. P. 315–320. (In Russ.).

21. Makarov A. S. Arctic Sea Level Fluctuations in the Holocene. Dissertation for the Degree of Doctor of Geographical Sciences. St. Petersburg: Federal State Budgetary Institution “Arctic and Antarctic Research Institute”; 2017. 309 p. (In Russ.).

22. Late Quaternary paleoecology of the northwestern part of the North Pacific: micropaleontology of sedimentary material according to the SQUID project / A. G. Matul [et al.]. Geology of the seas and oceans. Vol. 1. Moscow; 2011. P. 218. (In Russ.).

23. Mustafin M. A., Pushina Z. V., Sergeev A. Yu. Diatoms from Upper Quaternary bottom sediments of the Bering Strait. Patterns of evolution and biostratigraphy. Proceedings of the LXX session of the Paleontological Society of the Russian Academy of Sciences. St. Petersburg: Kartfabrika of the Karpinsky Institute; 2024. P. 189–190. (In Russ.).

24. Mustafin M. A., Pushina Z. V., Sergeev A. Yu. Diatoms from bottom sediments of the Gulf of Anadyr, Bering Sea. Geology of the seas and oceans: Proceedings of the XXV International Scientific Conference (School) on Marine Geology. Vol. IV. Moscow: IO RAS; 2023. P. 80–83. (In Russ.).

25. Ovsepyan E. A., Ivanova E. V., Gulev S. K. Paleooceanological conditions in the western Bering Sea as a response to sea level fluctuations and remote climate signals over the past 180 thousand years. Doklady of the Russian Academy of Sciences. 2016; 468 (4): 437–440. https://doi.org/10.7868/S0869565216160192. (In Russ.).

26. Paleooceanological conditions in western part of the Bering Sea in the late Quaternary / E. A. Ovsepyan [et al.]. Oceanology. 2013; 53 (2): 237–248. https://doi.org/10.7868/S0030157413020159 (In Russ.).

27. Pavlidis Yu. A., Ionin A. S., Medvedev V. S. Paleogeography of the Late Wurm of the Beringian Shelf. Geology and Geomorphology of Shelves and Continental Slopes. Moscow: Nauka; 1985. P. 65–76. (In Russ.).

28. Petrov O. M. Geological history of the Bering Strait in the late Cenozoic. Beringia in the Cenozoic. Proceedings of the All-Union Symposium “Beringian land and its significance for the development of Holarctic floras and faunas in the Cenozoic”, Khabarovsk, 10–15 May 1973. Vladivostok: Far Eastern Scientific Center of the USSR Academy of Sciences; 1976. P. 28–32. (In Russ.).

29. State Geological Map of the Russian Federation. Scale 1 : 1,000,000 (third generation). Koryak-Kuril series. Sheet P-59 — Pakhachi. Explanatory note / A. V. Razumny [et. al.]. St. Petersburg: VSEGEI Cartographic Factory; 2017. 323 p. (In Russ.).

30. Svitoch A. A. Correlation of Late Pleistocene and Holocene Events in Chukotka, Alaska, and the North of Western Siberia (Based on Radiocarbon Dating). Doklady of the USSR Academy of Sciences. 1977; 232 (5): 1161–1164. (In Russ.).

31. Svitoch A. A., Taldenkova E. E. On the issue of cold transgressions of the Bering Sea. Oceanology. 2002; 42 (1): 143–151. (In Russ.).

32. Slobodin S. B. On the issue of the toponym “Beringia” and the role of Pyotr Petrovich Sushkin in the spread of this term. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. 2016; 185 (1): 90–98. (In Russ.).

33. Stepanova G. V., Pushina Z. V., Dundo O. P. Sedimentation conditions in the Holocene of the Bering Sea: (based on the results of diatom analysis). Proceedings of NIIGA-VNIIOkeangeologiya. 2013; 226: 192–200. (In Russ.).

34. Stratigraphic Code of Russia. Third edition, revised and supplemented. St. Petersburg: VSEGEI Publishing House; 2019. 96 p. (In Russ.).

35. Hopkins D. M. Sea level history in Beringia over the past 250,000 years. Beringia in the Cenozoic. Proceedings of the All-Union Symposium “Beringian land and its significance for the development of Holarctic floras and faunas in the Cenozoic”, Khabarovsk, 10–15 May 1973. Vladivostok; 1976. P. 9–27. (In Russ.).

36. Foraminifera and diatoms in the Upper Pleistocene and Holocene sediments of the Bering Sea (Shirshov Ridge) / T. A. Khusid [et al.]. Geology of the seas and oceans. Vol. 1. Moscow: GEOS; 2011. P. 284–287. (In Russ.).

37. Life and times of the Bering land bridge / S. A. Elias [et al.]. Nature. 1996; 382: 60–63. https://doi.org/10.1038/382060a0.

38. Elias S. A., Short S. K., Phillips R. L. Paleoecology of Late-Glacial Peats from the Bering Land Bridge, Chukchi Sea Shelf Region, Northwestern Alaska. Quaternary Research. 1992; 38: 371–378. https://doi.org/10.1016/0033-5894(92)90045-K.

39. England J., Furze M. New evidence from the western Canadian Arctic Archipelago for the resubmergence of Bering Strait. Quaternary Research. 2008; 70: 60–67. https://doi.org/10.1016/j.yqres.2008.03.001

40. Post-glacial flooding of the Bering Land Bridge dated to 11 cal kaBP based on new geophysical and sediment records / J. C. Hill [et al.]. Climate of the Past. 2017; 13: 991–1005. https://doi.org/10.5194/cp-13-991-2017.

41. New evidence for high discharge to the Chukchi shelf since the Last Glacial Maximum / J. C. Hill [et al.]. Quaternary Research. 2007; 68 (2): 271–279. https://doi.org/10.1016/j.yqres.2007.04.004.

42. Hoffecker J. F., Pitulko V. V., Pavlova E. Y. Beringia and the Settlement of the Western Hemisphere. Bulletin of St. Petersburg University. History. 2022; 67 (3): 882–909. https://doi.org/10.21638/spbu02.2022.313.

43. Quaternary correlations across Bering Strait / D. M. Hopkins [et al.]. Science.1965; 147 (3662): 1107–1114.

44. Hopkins D. M. The Cenozoic history of Beringia — A synthesis. The Bering Land Bridge. Stanford Univ. Press, Calif.; 1967. P. 451–484.

45. Rapid sea-level rise and Holocene climate in the Chukchi Sea / L. D. Keigwin [et al.]. Geology. 2006; 34: 861–864. https://doi.org/10.1130/G22712.1

46. Closure of the Bering Strait caused Mid-Pleistocene Transition cooling / S. Kender [et al.]. Nature Communications. 2018; 9 (5386). https://doi.org/10.1038/s41467-018-07828-0.

47. The Holocene transgression on the Arctic flank of Beringia: Chukchi valley to Chukchi estuary to Chukchi Sea / D. A. McManus [et al.], [Eds.] P. M. Masters, N. C. Flemming. Quaternary Coastlines and Marine Archaeology. London, Pergamon; 1983. P. 365–388.

48. McManus D. A., Creager J. S. Sea-level data for parts of the Bering–Chukchi shelves of Beringia from 19,000 to 10,000 14C yr B.P. Quaternary Research. 1984; 21 (3): 317–325.

49. Muhs D. R. MIS 5e sea-level history along the Pacific coast of North America. Earth System Science Data. 2022; 14: 1271–1330. https://doi.org/10.5194/essd-14-1271-2022.

50. Oceanographic and climatic change in the Bering Sea, Last Glacial Maximum to Holocene / B. M. Pelto [et al.]. Paleoceanography and Paleoclimatology. 2018; 33: 2215–2236. https://doi.org/10.1002/2017PA003265.

51. Pico T., Mitrovica J. X., Mix A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Science Advances. 2020; 6 (9): eaay2935. https://doi.org/10.1126/sciadv.aay2935.

52. Ribó M., Goodwin I. D., O’Brien P., Mortlock T. Shelf sand supply determined by glacial-age sea-level modes, submerged coastlines and wave climate. Scientific Reports. 2020; 10 (462). https://doi.org/10.1038/s41598-019-57049-8.

53. Sancetta C., Robinson S. W. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quaternary Research. 1983; 20 (2): 232–245. https://doi.org/10.1016/0033-5894(83)90079-0.

54. Tanaka S., Takahashi K. Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages. Deep Sea Research Part II Topical Studies in Oceanography. 2005; 52 (16-18): 2131–2149. https://doi.org/10.1016/j.dsr2.2005.07.002.

55. Woodroffe S. A., Horton B. P. Holocene sea-level changes in the Indo-Pacific. Journal of Asian Earth Sciences. 2005; 25 (1): 29–43. https://doi.org/10.1016/j.jseaes.2004.01.009.

56. A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal / M. J. Wooller [et al.]. Royal Society open science. 2018; 5: 180145. http://dx.doi.org/10.1098/rsos.180145.


Review

For citations:


Zhamoida V.A., Sergeev A.Yu., Budanov L.M., Ryabchuk D.V., Grigoriev A.G., Neevin I.A., Mustafin M.A. Evolution of morphogenesis and sedimentation processes in the coastal shelf of Beringia during Late Quaternary climatic changes. Regional Geology and Metallogeny. 2024;31(4):95-114. (In Russ.) https://doi.org/10.52349/0869-7892_2024_100_95-114

Views: 13


ISSN 0869-7892 (Print)