Preview

Regional Geology and Metallogeny

Advanced search

REE + Y, Hf, U, Th, and Pb distribution in zircon as an indicator for fertility of magmatic rocks of the Malmyzh and Pony Cu-Au-porphyry ore fields (Trans-Amur Region, Russian Far East)

Abstract

The results of studying distribution patterns of trace elements (REE + Y, Hf, U, Th, Pb) in zircons from magmatic rocks of the Malmyzh and Pony Cu-Au porphyry ore fields based on geochemical SIMS measurements of zircons are discussed in the paper. Trace elements contents in zircons were determined at the same spots in which isotopic age of crystallization was measured by SIMS U-Pb method (SHRIMP II). ∑REE content in zircons from the Malmyzh granitoids varies from 217 to 1158 ppm, Y – from 718 to 732 ppm, Hf – from 4524 to 4928 ppm, Pb – from 1.2 to 1.6 ppm, U – from 89 to 112 ppm, Th – from 58 to 76 ppm. Geochemical characteristics of zircons from the Pony monzodiorite-porphyry are strongly differing from the Malmyzh granitoid zircons. Concentrations of most trace elements in the Pony zircons, especially LREE and MREE, as well as Y, Pb, U and Th are of two-three times higher than in zircons from the Malmyzh granitoids. Assessment of magmatic rocks fertility from the Malmyzh and Pony ore fields based on geochemical characteristics of zircons was carried out using Eu/Eu* vs. Dy/Nd and Eu/Eu* vs. (Ce/Nd)/Y plots. Analysis of these plots shows that zircons from the Malmyzh granitoids fall into the field of fertile porphyry systems whereas zircons from the Pony monzodiorite-porphyry fall into the field of barren suites. This result can be utilized during prognostic and metallogenic considerations not only within the limits of Sikhote-Alin territory but also within the whole Russian Far East region

About the Authors

O. V. Petrov
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Corresponding Member of RAS, Doctor of Geological and Mineralogical Sciences, Doctor Economic Sciences, Director General



E. A. Kiselev
Federal Agency of Mineral Resources (Rosnedra)
Russian Federation

Deputy Minister of Natural Resources and Ecology of the Russian Federation, Head



A. I. Khanchuk
Far East Geological Institute of Far Eastern Branch of Russian Academy of Sciences (FEGI FEB RAS)
Russian Federation

Academician of RAS, Doctor of Geological and Mineralogical Sciences, Research Supervisor



V. V. Ivanov
Far East Geological Institute of Far Eastern Branch of Russian Academy of Sciences (FEGI FEB RAS)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Leading Scientist, Head of Laboratory



V. V. Shatov
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Leading Geologist



A. A. Alenicheva
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Senior Researcher



A. V. Molchanov
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Doctor of Geological and Mineralogical Sciences, Director, Centre of Predictive Metallogenic Studies



A. V. Terekhov
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Head of Department



V. I. Leont’ev
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Leading Geologist



N. V. Rodionov
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Candidate of Physical and Mathematical Sciences, Head of Sector, Centre of Isotopic Research of VSEGEI



B. V. Belyatskiy
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Leading Engineer, CIR



S. A. Sergeev
A. P. Karpinsky Russian Geological Research Institute (VSEGEI)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Director, CIR



References

1. Glebovitsky V. A., Samorukova L. M., Sedova I. S., Fedoseenko A. M. Zircon geochemistry of anatectic and diatectic stages of migmatite formation in the Northwestern Ladoga Region. Doklady Earth Sciences, 2008, vol. 420, no. 6, pp. 813–817. (In Russian).

2. Ivanov V. V., Kononov V. V., Ignat’ev E. K. Mineralogo-geokhimicheskie osobennosti rudnoy mineralizatsii v metasomatitakh zoloto-mednogo rudnogo polya Malmyzh (Nizhnee Priamur’e) [Mineralogical and geochemical patterns of ore mineralization in metasomatites from the Malmyzh gold-copper ore field (the Trans-Amur Territory)]. Tektonika, glubinnoe stroenie i minerageniya Vostoka Azii: VIII Kosyginskie chteniya. Khabarovsk, Institut tektoniki i geofiziki im. Yu. A. Kosygina Dal’nevostochnogo otdeleniya Rossiyskoy akademii nauk, 2013, pp. 258–261. (In Russian).

3. Krasnobaev А. А. Tsirkon kak idikator geologicheskikh protsessov [Zircon as an indicator of geological processes]. Мoscow, Nauka, 1986, 134 p.

4. Migachev I. F., Girfanov M. M., Shishakov V. B. The Peschanka copper porphyry deposit. Ores and metals, 1995, no. 3, pp. 48–58. (In Russian).

5. Petrov O. V., Kiselev E. А., Shpikerman V. I., Zmievskiy Yu. P. Anticipating the distribution of gold-copper-porphyry-type deposits in volcanic-plutonic belts of Russia‘s eastern regions based on results of compiling sheets of the State Geological Map-1000/3. Regional Geology and Metallogeny, 2019, no. 80, pp. 50–74. (In Russian).

6. Petrov O. V., Khanchuk A. I., Ivanov V. V., Kiselev E. A., Shatov V. V., Zmievsky Yu. P., Molchanov A. V., Terekhov A. V., Sergeev S. A. U-Pb SIMS geochronology of ore-bearing magmatic rocks of the Malmyzh and Poni gold-copper-porphyry ore fields (Lower Amur River Region). Regional Geology and Metallogeny, 2020, no. 83, pp. 41–56. (In Russian).

7. Skublov S. G., Lobach-Zhuchenko S. B., Guseva N. S., Gembitskaya I. M., Tolmacheva E. V. Raspredelenie redkozemel’nykh i redkikh elementov v tsirkonakh

8. iz miaskitovykh lamproitov Panozerskogo kompleksa Tsentral’noy Karelii [Rare earth and trace elements distribution in zircons from miaskite lamproites of the Panozero Complex, Central Karelia]. Geokhimiya, 2009, no. 9, pp. 958–971. (In Russian).

9. Fedotova А. А., Bibikova Е. V., Simakin S. G. Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geokhimiya, 2008, no. 9, pp. 980–997. (In Russian).

10. Fershtater G. B., Krasnobaev А. А., Bea F., Montero P. Geokhimiya tsirkona iz magmaticheskikh i metamorficheskikh porod Urala [Zircon geochemistry from magmatic and metamorphic rocks of the Urals]. Litosfera, 2012, no. 4, pp. 3–29. (In Russian).

11. Khanchuk A. I., Grebennikov A. V., Ivanov V. V. Albian-Cenomanian orogenic belt and igneous province of Pacific Asia. Russian Journal of Pacific Geology, 2019, vol. 38, no. 3, pp. 4–37. (In Russian).

12. Khanchuk A. I., Ivanov V. V., Ignatiev E. K., Kovalenko S. V., Semenova D. V. Albian-Cenomanian magmatism and copper ore genesis of the Sikhote-Alin. Doklady Earth Sciences, 2019, vol. 488, no. 3, pp. 69–73. (In Russian).

13. Chitalin A. F., Yefimov А. А., Voskresensky K. I., Ignatiev Y. K., Kolesnikov А. G. Malmyzh – a new large world-class porphyry copper-gold system in the Sikhote Alin. Mineral resources of Russia. Economics and management, 2013, no. 3, pp. 65–69. (In Russian).

14. Chitalin A. F., Nikolaev Yu. N., Baksheev I. A., Prokofiev V. Yu., Fomichev Е. V., Usenko V. V., Nagornaya Е. V., Marushchenko L. I., Sidorina Yu. N., Dzhedzheya G. Т. Porfirovo-epitermal’nye sistemy Baimskoy rudnoy zony, Zapadnaya Chukotka [Porphyry-epithermal systems of the Baimskaya ore zone, Western Chukotka]. Smirnovskiy sbornik – 2016. Ch. I: Problemy mineragenii, ekonomicheskoy geologii i prognoza mestorozhdeniy. Moscow, MAKS Press, 2016, p. 82–114. (In Russian).

15. Shatova N. V., Skublov S. G., Mel’nik A. E., Shatov V. V., Molchanov A. V., Terekhov A. V., Sergeev S. A. Geochronology of alkaline magmatic rocks and metasomatites of the Ryabinovy stock (South Yakutia) based on zircon isotopic and geochemical (U-Pb, REE) investigations. Regional Geology and Metallogeny, 2017, no. 69, pp. 33–48. (In Russian).

16. Baker M. J., Wilkinson J. J., Wilkinson C. C., Cooke D. R., Ireland T. Epidote trace element chemistry as an exploration tool in the Collahuasi district, Northern Chile. Economic Geology, 2020, vol. 115, no. 4, pp. 749–770.

17. Ballard J. R., Palin M. J., Campbell I. H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 2002, vol. 144, no. 3, pp. 347–364.

18. Bao X.-Sh., Yang L.-Q., Gau X., Groves D., Hea W.-Y., Lia M.-M. Geochemical discrimination between fertile and barren Eocene potassic porphyries in the Jinshajiang Cu-Au-Mo metallogenic belt, SW China: Implications for petrogenesis and metallogeny. Ore Geology Reviews, 2020, vol. 116, pp. 1–16.

19. Bouzari F., Hart C. J. R., Bissig T. Assessing porphyry copper deposit fertility in British Columbia batholiths using zircons. Geoscience BC* Report 2020-08, MDRU Publication 450, 2020, pp. 1–24.

20. Buret Y., Quadt A., Heinrich Ch., Selby D., Walle M., Peytcheva I. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 2016, vol. 450, pp. 120–131.

21. Canil D., Grondahl C., Lacourse T., Pisiak L. K. Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada. Ore Geology Reviews, 2016, vol. 72, pp. 1116–1128.

22. Chang Z.-G., Dong G.-C., Somarin A. K. U-Pb dating and trace element composition of zircons from the Gujiao ore-bearing intrusion, Shanxi, China: Implications for timing and mineralization of the Guojialiang iron skarn deposit. Minerals, 2020, no. 10, pp. 316–354.

23. Cooke D. R., Agnew P., Hollings P., Baker M., Chang Zh., Wilkinson J. J., Ahmed A., White N. C., Zhang L., Thompson J., Gemmell J. B., Chen H. Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: Detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. The Geological Society of London. Journal of Geochemistry: Exploration, Environment, Analysis, 2020, pp. 1–31. DOI: https://doi.org/10.1144/geochem2019-039

24. Gardiner N. J., Hawkesworth Ch. J., Robb L. J., Whitehouse M. J., Roberts N. M. W., Kirkland Ch. L., Evans N. J. Contrasting granite metallogeny through the zircon record: A case study from Myanmar. Scientific Reports, 2017, no. 7, pp. 748–756.

25. Hedenquist J. W., Watanabe Ya., Arribas A. Hypogene alunite from the El Salvador district, Chile, indicates potential for a blind porphyry copper center. Economic Geology, 2020, vol. 115, no. 2, pp. 231–240.

26. Kirkland C. L., Smithies R. H., Taylor R. J. M., Evans N., McDonald B. Zircon Th/U ratios in magmatic environs. Lithos, 2015, vol. 212, pp. 397–414.

27. Kobylinski Ch., Hattori K., Smith S., Plouffe A. Protracted magmatism and mineralized hydrothermal activity at the Gibraltar porphyry copper-molybdenum deposit, British Columbia. Economic Geology, 2020, vol. 115, no. 5, pp. 1119–1136.

28. Lee R. G., Dilles J. H., Tosdal R. M., Wooden J. L., Mazdab F. K. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons. Economic Geology, 2017, vol. 112, no. 2, pp. 245–273.

29. Loader M. A., Wilkinson J. J., Armstrong R. N. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 2017, vol. 472, pp. 107–119.

30. Lu Y.-J., Loucks R. R., Fiorentini M., Mc Cuaig T. С., Evans N. J., Yang Z.-M, Hou Z.-Q, Kirkland Ch. L., Parra-Avila L. A., Kobussen A. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au Deposits. Society Econ. Geology Special Publication, 2016, no. 19, pp. 329–347.

31. Müller D., Groves D. I. Potassic igneous rocks and associated gold-copper mineralization. Springer, the 4th Edition. 2016, 311 p.

32. Park J.-W., Campbell I. H., Malaviarachchi S. P. K., Cocker H., Hao H., Kay S. M. Chalcophile element fertility and the formation of porphyry Cu ± Au deposits. Mineralium Deposita, 2019, vol. 54, pp. 657–670.

33. Pizarro H., Campos E., Bouzari F., Rousse S., Bissig T., Gregoire M., Riquelme R. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits. Ore Geology Reviews, 2020. DOI: https://doi.org/10.1016/j.oregeorev.2020.103771

34. Shen P., Hattori K., Pan H., Jackson S., Seitmuratova E. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt. Economic Geology, 2015, vol. 110, pp. 1861–1878.

35. Shu Q., Chang Zh., Lai Y., Hu X., Wu H., Zhang Y., Wang P., Zhai D., Zhang Ch. Zircon trace elements and magma fertility: Insights from porphyry (-skarn) Mo deposits in NE China. Mineralium Deposita, 2019, vol. 54, pp. 645–656.

36. Sillitoe R. H. Porphyry copper systems. Economic Geology, 2010, vol. 105, no. 1, pp. 3–41.

37. Soloviev S. G., Kryazhev S. G., Dvurechinskaya S. S., Vasyukov V. E., Shumilin D. A., Voskresensky K. I. The superlarge Malmyzh porphyry Cu-Au deposit, Sikhote-Alin, eastern Russia: Igneous geochemistry, hydrothermal alteration, mineralization, and fluid inclusion characteristics. Ore Geology Reviews, 2019, vol. 113, pp. 1–27.

38. Uribe-Mogollon C., Maher K. White mica geochemistry: Discriminating between barren and mineralized porphyry systems. Economic Geology, 2020, vol. 115, no. 2, pp. 325–354.

39. Vigneresse J.-L., Truche L., Richard A. How do metals escape from magmas to form porphyry-type ore deposits? Ore Geology Reviews, 2019, vol. 105, pp. 310–336.

40. Wang L., Tang J., Yang Y., Li Zh., Lin X. Zircon U-Pb geochronology, geochemistry, and S-Pb isotopic compositions of the Lietinggang iron polymetallic deposit, Tibet, China. Ore Geology Reviews, 2018, vol. 98, pp. 62–79.

41. Xie F., Tang J., Lang X., Ma D. The different source and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite. Lithos, 2018, vol. 314–315, pp. 447–462.

42. Zhang C.-C., Sun W.-D., Wang J.-T., Zhang L.-P., Sun S.-J., Wu K. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 2017, vol. 206, pp. 343–363.

43. Zhang Z., Wang L., Tang P., Lin B., Sun M., Qi J., Li Y., Yang Zh. Geochemistry and zircon trace elements composition of the Miocene ore-bearing biotite monzogranite porphyry in the Demingding porphyry Cu-Mo deposit, Tibet: Petrogenesis and implication for magma fertility. Geological Journal, 2020, vol. 55, iss. 6, pp. 4525–4542.

44. Zou X., Qin K., Han X., Li G., Evans N. J., Li Zh., Yang W. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 2019, vol. 506, pp. 87–96.


Review

For citations:


Petrov O.V., Kiselev E.A., Khanchuk A.I., Ivanov V.V., Shatov V.V., Alenicheva A.A., Molchanov A.V., Terekhov A.V., Leont’ev V.I., Rodionov N.V., Belyatskiy B.V., Sergeev S.A. REE + Y, Hf, U, Th, and Pb distribution in zircon as an indicator for fertility of magmatic rocks of the Malmyzh and Pony Cu-Au-porphyry ore fields (Trans-Amur Region, Russian Far East). Regional Geology and Metallogeny. 2020;(84):55–70. (In Russ.)

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7892 (Print)