Preview

Regional Geology and Metallogeny

Advanced search

Neoarchaean granite of the Karelian Province: geological setting, geochemistry, origin

Abstract

Geology and chemical composition of the Neoarchaean granites from the Karelian Province, the Baltic Shield, have been studied. It is shown that the granites is widespread over the area of the province and formed during a short time interval of 2.68–2.72 Ga. Variations in chemical composition are mainly caused by variations in rare and RE element grades controlled by the restite mineral composition, which depends on the pressure and melting temperature in the source. The Nd isotope composition in the granites within the Vodlozero domain indicate on an old crust source, such as old rocks of the TTG association. In the most granites of other domains, it indicates on the separation of the source from the protolyte shortly before the initial melt formation. Variety of geological forms and chemical composition of the granites are not caused by variations in the geodynamic setting.

About the Authors

V. P. Chekulaev
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences (IGGP RAS)
Russian Federation

Doctor of Geological and Mineralogical Sciences, Chief Researcher



N. A. Arestova
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences (IGGP RAS)
Russian Federation

Doctor of Geological and Mineralogical Sciences, Leading Researcher



Ju. S. Egorova
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences (IGGP RAS)
Russian Federation

Candidate of Geological and Mineralogical Sciences, Researcher



References

1. Arestova N. A., Chekulaev V. P., Lobach-Zhuchenko S. B. et al. Correlation of the formation of the Archean crust of the ancient Vodlozersky domain (Baltic Shield). Stratigrafiya. Geologicheskaya korrelyatsiya. 2015. Vol. 23, No. 2, pp. 1–13. (In Russian).

2. Geologiya i petrologiya arkheyskogo granitno-zelenokamennogo kompleksa Tsentral’noy Karelii [Geology and petrology of the Archaean granite-greenstone complex of the Central Karelia] Ed. by K. O. Krattsa. Leningrad: Nauka. 1978. 262 p.

3. Geologiya i petrologiya granito-gneysovoy oblasti Yugo-Zapadnoy Karelii [Geology and petrology of the granite-greenstone terrain of the South-Western Karelia]. Ed. by K. O. Krattsa. Leningrad: Nauka. 1969. 226 p.

4. Goncharov A. G., Kal’nin K. A., Lizinskiy M. D. et al. Seismo-geologic cyaracteristics of the earth’s crust of the Karelia. The problems of the complex interpretation of geology-geophisics data. Leningrad: Nedra. 1991. Pp. 53–84. (In Russian).

5. Ivanikov V. V., Grigor’ieva L. V., Shinkarev N. Ph. et al. Late-Archaean ore-magmatic granite-molibdenium system in the North-Eastern Karelia. Vestnik SPbGU. Ser. 7: geology-geography. 1995. Vol. 4, No. 28, pp. 35–44. (In Russian).

6. Kovalenko A. V., Rizvanova N. G. Ostersky pluton (Central Karelia) – the oldest massif of two-fieldspate granites on the Baltic Shield. Doclady RAS. 2000. Vol. 373. No. 2, pp. 210-214. (In Russian).

7. Lobach-Zhuchenko S. B., Arestova N. A., Chekulaev V. P. et al. Evolution of the South-Vygozero greenstone belt of the Karelia. Petrologiya. 1999. Vol. 7, No. 2, pp. 156–173. (In Russian).

8. Lobach-Zhuchenko S. B., Chekulaev V. P., Arestova N. A. et al. Archean terranes of Karelia: their geological and isotope-geochemical substantiation. Geotektonika. 2000. No. 6, pp. 26–42. (In Russian).

9. Lobach-Zhuchenko S. B., Chekulaev V. P., Berkovskiy A. N. Gneiss-granite areas of Karelia. Problems of the evolution of the Precambrian lithosphere. Leningrad: Nauka. 1986. Pp. 153–163. (In Russian).

10. Makeev A. F. Radiatsionno-khimicheskie prevrashcheniya tsirkonov i ikh primenenie v geokhronologii [Radiation-chemical transformations of zircons and their application in geochronology]. Leningrad: Nauka. 1981. 64 p.

11. Matrenichev V. A., Pin’kova L. O., Levchenkov O. A. et al. Isolation of the second generation of Archean greenstone belts of Karelia: Geology and geochronology. Isotopic dating of geological processes: new methods and results: Abstract. Reports. Moscow. 2000. Pp. 245–247. (In Russian).

12. Ranniy dokembriy Baltiyskogo shchita [Early Precambrian of the Baltic Shield]. Ed. by V. A. Glebovitskiy. St. Petersburg: Nauka. 2005. 711 p.

13. Chekulaev V. P., Arestova N. A. Heterogeneity of the structure of the Karelian Province of the Fennoscandinavian Shield as a reflection of crustal conditions from Paleo- to Neoarchean. Evolution of the material and isotopic composition of the Precambrian lithosphere. St. Petersburg. 2018. Pp. 35–61. (In Russian).

14. Chekulaev V. P., Arestova N. A., Egorova Ju. S., Kucherovskiy G. A. Change in the conditions for the formation of the crust of the Karelian province of the Baltic Shield during the transition from Meso-Neoarchean: results of geochemical studies. Stratigrafiya. Geologicheskaiya Korrelliatsiya. 2018. No. 3, pp. 3–23. (In Russian).

15. Chekulaev V. P., Lobach-Zhuchenko S. B., Levskiy L. K. Archaean granites of Karelia as the indicators of composition and age of continental crust. Geochimiya. 1997. No. 8, pp. 808–816. (In Russian).

16. Arestova, N. A., Lobach-Zhuchenko, S. B., Chekulaev, V. P. 2003: Early Precambrian mafic rocks of the Fennoscandian Shield as reflection of plume magmatism: Geochemical types and formation stages. Russian journal of Earth Sciences. 5. 3. 145–163.

17. Chappell, B. W., White, A. J. R. 1974: Two contrasting granite types. Pasific Geology. 8. 173–174.

18. Collins, W. J., Beams, S. D., White, A. J. R. 1982: Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology. 80. 189–200.

19. Condie, K. 1993: Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology. 104. 1–37.

20. DePaolo, D. J. 1981: Neodimium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature. 291. 684–687.

21. Douce, P. A. E. 1997: Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology. 25. 8. 743–746.

22. Douce, P. A. E., Beard, J. S. 1995: Degidration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology. 36. 707–738.

23. Eby, G. N. 1990: The A-tipe granitoids. A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos. 26. 115–134.

24. Huhma, H., Manttari, I., Peltonen, P. et al. 2012: The age of the Archaean greenstone belte of Finland. Geological Survey of Finland, Special Paper. 12. 73–174.

25. Huhma, H., Kontinen, A., Mikkola, P. et al. 2012: Nd isotopic evidence for Archaean crustal growth in Finland. Geological Survey of Finland, Special Paper. 12. 175–212.

26. Lobach-Zhuchenko, S. B., Rollinson, H. R., Chekulaev, V. P. et al. 2005: The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin. Lithos. 79. 107–128.

27. Pearce, J. A., Harris, N. B. W., Tindle, A. G. 1984: Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. 25. 956–983.

28. Rapp, R. P., Watson, E. B., Miller, C. F. 1991: Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research. 51. 1–25.

29. Roberts, M. P., Clemens, J. D. 1993: Oririn of high-potassium, calc-alkaline, I-type granitoids. Geology. 23. 825–828.

30. Sun, S. S., McDonough, W. F. 1989: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins. – Geological Society, London, Special Publications. 42. 313–345. http://dx.doi.org/10.1144/gsl.sp.1989.042.01.19.

31. Watson, J. B., Harrison, T. M. 1983: Zircon saturation revisited: Temperature and composition effects in a variety crustal magma types. Earth and Planetary Science Letters. 64. 295–304.


Review

For citations:


Chekulaev V.P., Arestova N.A., Egorova J.S. Neoarchaean granite of the Karelian Province: geological setting, geochemistry, origin. Regional Geology and Metallogeny. 2020;(81):27–44. (In Russ.)

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7892 (Print)